28 research outputs found
Study of Operating Characteristics of Pyrotechnic Reserve Power Source Based on Magnesium and Zinс
This paper presents the results of studies of operating parameters of pyrotechnic reserve power source (PRPS). This battery was activated by the pyrotechnic compositions contained in the electrodes. Once the ignition impulse worked, the pyrotechnic compositions took fire immediately and melted the electrolyte. Then the rest pyrotechnic compositions served as anode and cathode. The battery began to discharge. The following characteristics of PRPS were evaluated during the study: release time to operating regime of the electric current, the duration of the PRPS work and initiation temperature of PRPS. A detailed evaluation of the Mg/LiF/PbF2 electrochemical system and Zn/LiF/PbF2 one is undertaken. Test results show that the electric current value using powder of zinc and granular zinc in these experiments was 0.179 A and 0.1 A, respectively, and the operating time at these values of elecrtic current was 40 and 151 sec, respectively
Synthesizing State-machine Behaviour from UML Collaborations and Use Case Maps
Telecommunication services are provided as the joint effort of components, which collaborate in order to achieve the goal(s) of the service. UML 2.0 collaborations can be used to model services. Furthermore, they allow services to be described modularly and incrementally, since collaborations can be composed of subordinate collaborations. For such an approach to work, it is necessary to capture the exact dependencies between the subordinate collaborations. This paper presents the results of an experiment on using Use Case Maps (UCMs) for describing those dependencies, and for synthesizing the state-machine behaviour of service components from the joint information provided by the UML collaborations and the UCM diagrams
Recommended from our members
Ionospheric convection response to slow, strong variations in a northward interplanetary magnetic field: A case study for January 14, 1988
We analyze ionospheric convection patterns over the polar regions during the passage of an interplanetary magnetic cloud on January 14, 1988, when the interplanetary magnetic field (IMF) rotated slowly in direction and had a large amplitude. Using the assimilative mapping of ionospheric electrodynamics (AMIE) procedure, we combine simultaneous observations of ionospheric drifts and magnetic perturbations from many different instruments into consistent patterns of high-latitude electrodynamics, focusing on the period of northward IMF. By combining satellite data with ground-based observations, we have generated one of the most comprehensive data sets yet assembled and used it to produce convection maps for both hemispheres. We present evidence that a lobe convection cell was embedded within normal merging convection during a period when the IMF By and Bz components were large and positive. As the IMF became predominantly northward, a strong reversed convection pattern (afternoon-to-morning potential drop of around 100 kV) appeared in the southern (summer) polar cap, while convection in the northern (winter) hemisphere became weak and disordered with a dawn-to-dusk potential drop of the order of 30 kV. These patterns persisted for about 3 hours, until the IMF rotated significantly toward the west. We interpret this behavior in terms of a recently proposed merging model for northward IMF under solstice conditions, for which lobe field lines from the hemisphere tilted toward the Sun (summer hemisphere) drape over the dayside magnetosphere, producing reverse convection in the summer hemisphere and impeding direct contact between the solar wind and field lines connected to the winter polar cap. The positive IMF Bx component present at this time could have contributed to the observed hemispheric asymmetry. Reverse convection in the summer hemisphere broke down rapidly after the ratio |By/Bz| exceeded unity, while convection in the winter hemisphere strengthened. A dominant dawn-to-dusk potential drop was established in both hemispheres when the magnitude of By exceeded that of Bz, with potential drops of the order of 100 kV, even while Bz remained northward. The later transition to southward Bz produced a gradual intensification of the convection, but a greater qualitative change occurred at the transition through |By/Bz| = 1 than at the transition through Bz = 0. The various convection patterns we derive under northward IMF conditions illustrate all possibilities previously discussed in the literature: nearly single-cell and multicell, distorted and symmetric, ordered and unordered, and sunward and antisunward