9 research outputs found

    Read-through Activation of Transcription in a Cellular Genomic Context

    Get PDF
    Read-through transcription from the adjacent E1a gene region is required for wild-type (wt) activity of the downstream adenovirus E1b promoter early after infection (read-through activation). However, whether a cellular chromosomal template can support read-through activation is not known. To address this issue, read-through activation was evaluated in the context of stably expressed templates in transfected cells. Inhibition of read-through transcription by insertion of a transcription termination sequence between the E1a and E1b promoters reduced downstream gene expression from stably integrated templates. The results indicate that the mechanism of read-through activation does not depend on the structure of early adenovirus nucleoprotein complexes, a structure that is likely to be different from that of cellular chromatin. Accordingly, this regulatory interaction could participate in the coordinated control of the expression of closely linked cellular genes

    A Unified Approach to Distance-Two Colouring of Graphs on Surfaces

    Full text link
    In this paper we introduce the notion of Σ\Sigma-colouring of a graph GG: For given subsets Σ(v)\Sigma(v) of neighbours of vv, for every vV(G)v\in V(G), this is a proper colouring of the vertices of GG such that, in addition, vertices that appear together in some Σ(v)\Sigma(v) receive different colours. This concept generalises the notion of colouring the square of graphs and of cyclic colouring of graphs embedded in a surface. We prove a general result for graphs embeddable in a fixed surface, which implies asymptotic versions of Wegner's and Borodin's Conjecture on the planar version of these two colourings. Using a recent approach of Havet et al., we reduce the problem to edge-colouring of multigraphs, and then use Kahn's result that the list chromatic index is close to the fractional chromatic index. Our results are based on a strong structural lemma for graphs embeddable in a fixed surface, which also implies that the size of a clique in the square of a graph of maximum degree Δ\Delta embeddable in some fixed surface is at most 32Δ\frac32\,\Delta plus a constant.Comment: 36 page

    Universality, Tolerance, Chaos and Order

    No full text
    What is the minimum possible number of edges in a graph that contains a copy of every graph on n vertices with maximum degree a most k? This question, as well as several related variants, received a considerable amount of attention during the last decade. In this short survey we describe the known results focusing on the main ideas in the proofs, discuss the remaining open problems, and mention a recent application in the investigation of the complexity of subgraph containment problems

    Locating-Domination and Identification

    No full text
    International audienceLocating-domination and identification are two particular, related, types of domination: a set C of vertices in a graph G = (V, E) is a locating-dominating code if it is dominating and any two vertices of V \ C are dominated by distinct sets of codewords; C is an identifying code if it is dominating and any two vertices of V are dominated by distinct sets of codewords. This chapter presents a survey of the major results on locating-domination and on identification
    corecore