369 research outputs found

    Linearized stability of charged thin-shell wormholes

    Get PDF
    The linearized stability of charged thin shell wormholes under spherically symmetric perturbations is analized. It is shown that the presence of a large value of charge provides stabilization to the system, in the sense that the constrains onto the equation of state are less severe than for non-charged wormholes.Comment: 8 pages, 2 figures; v2: minor changes. Accepted for publication in General Relativity and Gravitatio

    Chemical fingerprints of hot Jupiter planet formation

    Get PDF
    The current paradigm to explain the presence of Jupiters with small orbital periods (P << 10 days; hot Jupiters) that involves their formation beyond the snow line following inward migration, has been challenged by recent works that explored the possibility of in situ formation. We aim to test whether stars harbouring hot Jupiters and stars with more distant gas-giant planets show any chemical peculiarity that could be related to different formation processes. Our results show that stars with hot Jupiters have higher metallicities than stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20 dex. The data also shows a tendency of stars with cool Jupiters to show larger abundances of α\alpha elements. No abundance differences between stars with cool and hot Jupiters are found when considering iron peak, volatile elements or the C/O, and Mg/Si ratios. The corresponding pp-values from the statistical tests comparing the cumulative distributions of cool and hot planet hosts are 0.20, << 0.01, 0.81, and 0.16 for metallicity, α\alpha, iron-peak, and volatile elements, respectively. We confirm previous works suggesting that more distant planets show higher planetary masses as well as larger eccentricities. We note differences in age and spectral type between the hot and cool planet hosts samples that might affect the abundance comparison. The differences in the distribution of planetary mass, period, eccentricity, and stellar host metallicity suggest a different formation mechanism for hot and cool Jupiters. The slightly larger α\alpha abundances found in stars harbouring cool Jupiters might compensate their lower metallicities allowing the formation of gas-giant planets.Comment: Accepted by Astronomy & Astrophysic

    Connecting substellar and stellar formation. The role of the host star's metallicity

    Get PDF
    Most of our current understanding of the planet formation mechanism is based on the planet metallicity correlation derived mostly from solar-type stars harbouring gas-giant planets. To achieve a far more reaching grasp on the substellar formation process we aim to analyse in terms of their metallicity a diverse sample of stars (in terms of mass and spectral type) covering the whole range of possible outcomes of the planet formation process (from planetesimals to brown dwarfs and low-mass binaries). Our methodology is based on the use of high-precision stellar parameters derived by our own group in previous works from high-resolution spectra by using the iron ionisation and equilibrium conditions. All values are derived in an homogeneous way, except for the M dwarfs where a methodology based on the use of pseudo equivalent widths of spectral features was used. Our results show that as the mass of the substellar companion increases the metallicity of the host star tendency is to lower values. The same trend is maintained when analysing stars with low-mass stellar companions and a tendency towards a wide range of host star's metallicity is found for systems with low mass planets. We also confirm that more massive planets tend to orbit around more massive stars. The core-accretion formation mechanism for planet formation achieves its maximum efficiency for planets with masses in the range 0.2 and 2 MJup_{\rm Jup}. Substellar objects with higher masses have higher probabilities of being formed as stars. Low-mass planets and planetesimals might be formed by core-accretion even around low-metallicity stars.Comment: Accepted by A&

    A Theoretical Construction of Thin Shell Wormhole from Tidal Charged Black hole

    Full text link
    Recently, Dadhich et al [ Phys.Lett.B 487, 1 (2000)] have discovered a black hole solution localized on a three brane in five dimensional gravity in the Randall-Sundrum scenario. In this article, we develop a new class of thin shell wormhole by surgically grafting above two black hole spacetimes. Various aspects of this thin wormhole are also analyzed.Comment: 14 pages, 6 figures, Accepted in Gen.Rel.Gra

    Thin-shell wormholes from charged black holes in generalized dilaton-axion gravity

    Full text link
    This paper discusses a new type of thin-shell wormhole constructed by applying the cut-and-paste technique to two copies of a charged black hole in generalized dilaton-axion gravity, which was inspired by low-energy string theory. After analyzing various aspects of this thin-shell wormhole, we discuss its stability to linearized spherically symmetric perturbations.Comment: Minor changes, 6 pages, 4 figures. Accepted for publication in Gen. Rel. Gra

    Searching for signatures of planet formation in stars with circumstellar debris discs

    Get PDF
    (Abridged) Tentative correlations between the presence of dusty debris discs and low-mass planets have been presented. In parallel, detailed chemical abundance studies have reported different trends between samples of planet and non-planet hosts. We determine in a homogeneous way the metallicity, and abundances of a sample of 251 stars including stars with known debris discs, with debris discs and planets, and only with planets. Stars with debris discs and planets have the same [Fe/H] behaviour as stars hosting planets, and they also show a similar -Tc trend. Different behaviour in the -Tc trend is found between the samples of stars without planets and the samples of planet hosts. In particular, when considering only refractory elements, negative slopes are shown in cool giant planet hosts, whilst positive ones are shown in stars hosting low-mass planets. Stars hosting exclusively close-in giant planets show higher metallicities and positive -Tc slope. A search for correlations between the -Tc slopes and the stellar properties reveals a moderate but significant correlation with the stellar radius and as well as a weak correlation with the stellar age. The fact that stars with debris discs and stars with low-mass planets do not show neither metal enhancement nor a different -Tc trend might indicate a correlation between the presence of debris discs and the presence of low-mass planets. We extend results from previous works which reported differences in the -Tc trends between planet hosts and non hosts. However, these differences tend to be present only when the star hosts a cool distant planet and not in stars hosting exclusively low-mass planets.Comment: Accepted for publication in Astronomy and Astrophysic

    Gravitational microlensing of gamma-ray blazars

    Full text link
    We present a detailed study of the effects of gravitational microlensing on compact and distant Îł\gamma-ray blazars. These objects have Îł\gamma-ray emitting regions which are small enough as to be affected by microlensing effects produced by stars lying in intermediate galaxies. We analyze the temporal evolution of the gamma-ray magnification for sources moving in a caustic pattern field, where the combined effects of thousands of stars are taken into account using a numerical technique. We propose that some of the unidentified Îł\gamma-ray sources (particularly some of those lying at high galactic latitude whose gamma-ray statistical properties are very similar to detected Îł\gamma-ray blazars) are indeed the result of gravitational lensing magnification of background undetected Active Galactic Nuclei (AGNs).Comment: 30 pages, 27 figures. Four figures are being submitted only as .gif files, and should be printed separately. The abstract below has been shortened from the actual version appearing in the pape

    Chromaticity effects in microlensing by wormholes

    Get PDF
    Chromaticity effects introduced by the finite source size in microlensing events by presumed natural wormholes are studied. It is shown that these effects provide a specific signature that allow to discriminate between ordinary and negative mass lenses through the spectral analysis of the microlensing events. Both galactic and extragalactic situations are discussed.Comment: To appear in Modern Physics Letters A, 200

    On the possibility of an astronomical detection of chromaticity effects in microlensing by wormhole-like objects

    Get PDF
    We study the colour changes induced by blending in a wormhole-like microlensing scenario with extended sources. The results are compared with those obtained for limb darkening. We assess the possibility of an actual detection of the colour curve using the difference image analysis method.Comment: Accepted for publication in Modern Physics Letters A. 13 report pages, 7 figure
    • …
    corecore