40 research outputs found

    Caustic structures in the spectrum of x-ray Compton scattering off electrons driven by a short intense laser pulse

    Get PDF
    We study the Compton scattering of x-rays off electrons that are driven by a relativistically intense short optical laser pulse. The frequency spectrum of the laser-assisted Compton radiation shows a broad plateau in the vicinity of the laser-free Compton line due to a nonlinear mixing between x-ray and laser photons. Special emphasis is placed on how the shape of the short assisting laser pulse affects the spectrum of the scattered x-rays. In particular, we observe sharp peak structures in the plateau region, whose number and locations are highly sensitive to the laser pulse shape. These structures are interpreted as spectral caustics by using a semiclassical analysis of the laser-assisted QED matrix element

    Two-color ionization of hydrogen by short intense pulses

    Full text link
    Photoelectron energy spectra resulting by the interaction of hydrogen with two short pulses having carrier frequencies, respectively, in the range of the infrared and XUV regions have been calculated. The effects of the pulse duration and timing of the X-ray pulse on the photoelectron energy spectra are discussed. Analysis of the spectra obtained for very long pulses show that certain features may be explained in terms of quantum interferences in the time domain. It is found that, depending on the duration of the X-ray pulse, ripples in the energy spectra separated by the infrared photon energy may appear. Moreover, the temporal shape of the low frequency radiation field may be inferred by the breadth of the photoelectron energy spectra.Comment: 12 pages, 8 figure

    Theory of x-ray absorption by laser-dressed atoms

    Get PDF
    An ab initio theory is devised for the x-ray photoabsorption cross section of atoms in the field of a moderately intense optical laser (800nm, 10^13 W/cm^2). The laser dresses the core-excited atomic states, which introduces a dependence of the cross section on the angle between the polarization vectors of the two linearly polarized radiation sources. We use the Hartree-Fock-Slater approximation to describe the atomic many-particle problem in conjunction with a nonrelativistic quantum-electrodynamic approach to treat the photon-electron interaction. The continuum wave functions of ejected electrons are treated with a complex absorbing potential that is derived from smooth exterior complex scaling. The solution to the two-color (x-ray plus laser) problem is discussed in terms of a direct diagonalization of the complex symmetric matrix representation of the Hamiltonian. Alternative treatments with time-independent and time-dependent non-Hermitian perturbation theories are presented that exploit the weak interaction strength between x rays and atoms. We apply the theory to study the photoabsorption cross section of krypton atoms near the K edge. A pronounced modification of the cross section is found in the presence of the optical laser.Comment: 13 pages, 3 figures, 1 table, RevTeX4, corrected typoe

    Entangled States and Entropy Remnants of a Photon-Electron System

    Full text link
    In the present paper an example of entanglement between two different kinds of interacting particles, photons and electrons is analysed. The initial-value problem of the Schroedinger equation is solved non-perturbatively for the system of a free electron interacting with a quantized mode of the electromagnetic radiation. Wave packets of the dressed states so obtained are constructed in order to describe the spatio-temporal separation of the subsystems before and after the interaction. The joint probability amplitudes are calculated for the detection of the electron at some space-time location and the detection of a definite number of photons. The analytical study of the time evolution of entanglement between the initially separated electron wave packet and the radiation mode leads to the conclusion that in general there are non-vanishing entropy remnants in the subsystems after the interaction. On the basis of the simple model to be presented here, the calculated values of the entropy remnants crucially depend on the character of the switching-on and off of the interaction.Comment: 12 pages, 2 figure

    Thomson and Compton scattering with an intense laser pulse

    Full text link
    Our paper concerns the scattering of intense laser radiation on free electrons and it is focused on the relation between nonlinear Compton and nonlinear Thomson scattering. The analysis is performed for a laser field modeled by an ideal pulse with a finite duration, a fixed direction of propagation and indefinitely extended in the plane perpendicular to it. We derive the classical limit of the quantum spectral and angular distribution of the emitted radiation, for an arbitrary polarization of the laser pulse. We also rederive our result directly, in the framework of classical electrodynamics, obtaining, at the same time, the distribution for the emitted radiation with a well defined polarization. The results reduce to those established by Krafft et al. [Phys. Rev. E 72, 056502 (2005)] in the particular case of linear polarization of the pulse, orthogonal to the initial electron momentum. Conditions in which the differences between classical and quantum results are visible are discussed and illustrated by graphs

    ALP production through non-linear Compton scattering in intense fields

    Get PDF
    23 pages, 14 figuresWe derive production yields for massive pseudo-scalar and scalar axion-like-particles (ALPs), through non-linear Compton scattering of an electron in the background of low- and high-intensity electromagnetic fields. In particular, we focus on electromagnetic fields from Gaussian plane wave laser pulses. A detailed study of the angular distributions and effects of the scalar and pseudo-scalar masses is presented. It is shown that ultra-relativistic seed electrons can be used to produce scalars and pseudo-scalars with masses up to the order of the electron mass. We briefly discuss future applications of this work towards lab-based searches for light beyond-the-Standard-Model particles
    corecore