I0P Publishing

@ CrossMark

OPENACCESS

RECEIVED
20 November 2015

ACCEPTED FOR PUBLICATION
25 January 2016

PUBLISHED
17 February 2016

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

New J. Phys. 18 (2016) 023044 doi:10.1088,/1367-2630,/18,/2,/023044

H eutsche Physikalische Gesellschaft Published in partnership
New jou rnal Of PhyS|cs e e <I)DPG with: Deutsche Physikalische
0P Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics X
of Physics

PAPER

Caustic structures in x-ray Compton scattering off electrons driven by
ashortintense laser pulse

D Seipt'’, A Surzhykov', § Fritzsche" and B Kampfer™*

! Helmholtz-Institut Jena, Frobelstieg 3, D-07743 Jena, Germany

% Friedrich Schiller Universitit Jena, Theoretisch Physikalisches Institut, D-07743 Jena, Germany

*> Helmbholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, PO Box 510119, D-01314 Dresden, Germany
* TU Dresden, Institut fiir Theoretische Physik, D-01062 Dresden, Germany

E-mail: d.seipt@gsi.de

Keywords: XFEL, caustics, intense laser pulses, laser-assisted Compton scattering, strong-field QED

Abstract

We study the Compton scattering of x-rays off electrons that are driven by a relativistically intense
short optical laser pulse. The frequency spectrum of the laser-assisted Compton radiation shows a
broad plateau in the vicinity of the laser-free Compton line due to a nonlinear mixing between x-ray
and laser photons. Special emphasis is placed on how the shape of the short assisting laser pulse affects
the spectrum of the scattered x-rays. In particular, we observe sharp peak structures in the plateau
region, whose number and locations are highly sensitive to the laser pulse shape. These structures are
interpreted as spectral caustics by using a semiclassical analysis of the laser-assisted QED matrix
element, relating the caustic peak locations to the laser-driven electron motion.

1. Introduction

X-ray free electron lasers (XFELSs) help explore matter on ultra-short time-scales and under extreme conditions.
Their high x-ray photon flux and short pulse duration of only a few femtoseconds allow to record transient
processes like chemical reactions in real-time [1, 2]. Moreover, the x-ray scattering off dense plasmas—for
instance those plasmas generated by irradiating a solid density target with an ultra-intense optical laser pulse [3]
—facilitate the study of ultra-fast collective dynamics and plasma instabilities [4—7], which are important for
novel particle acceleration [8—10] or fusion energy concepts [3], for instance.

Such extreme states of matter can be generated with the help of optical lasers that reached already intensities
0f 1022 W ¢cm ™2 [11]. The interaction of such laser pulses with electrons (with charge e and mass 1) is
characterised by the laser’s normalised amplitude ag = |e|EL/mwy, where wy and E} are the frequency and
amplitude of the laser electric field, respectively. Already for 10'®* W cm ™ (a¢ ~ 1), the electron’s quiver motion
reaches relativistic velocities and its interaction with the laser’s magnetic field leads to a nonlinear orbital
motion, often denoted as ‘figure 8’ [12]. At extreme light intensities, ag >> 1, the electrons interact with many
photons from the laser field simultaneously and one enters the realm of non-perturbative strong-field quantum
electrodynamics (QED) [13-15].

High-intensity lasers can also be employed in laser-assisted scattering processes [ 16—32], where the presence
of the strong low-frequency laser field modulates a hard QED scattering process. This could be, for instance,
Compton scattering where a hard x-ray (or -ray) photon is scattered off a (quasi-)free electron with a frequency
change that depends on the scattering angle [33]. The assisting strong low-frequency laser field leads to the
formation of side-bands in the frequency spectrum close to the laser-free Compton line due to x-ray—optical
frequency mixing. Already for ay, ~ 1the electron interacts with alarge number of laser photons [34].

In this paper, we present a QED description of laser assisted Compton scattering [34—39] of an ultra-short
pulse of coherent x-rays from an XFEL off electrons moving in an intense (4o ~ 1) and ultra-short synchronised
optical laser pulse [40—42]. In contrast to previous works we analyse for the first time in detail the structures in
the frequency spectrum of the scattered x-rays with regard to the influence of the specific shape and duration of
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the assisting laser pulse, and how these structures are related to the ultra-fast laser-driven electron motion. By
developing a semiclassical picture we identify the prominent peaks in the spectrum as spectral caustics emerging
from coalescing stationary phase points where the quantum scattering amplitude is formed.

Caustics are a phenomenon known best from wave propagation. They occur when the rays associated to a
wave field coalesce on a manifold of lower dimension, creating bright zones in the wave field. A well known
example is the focal spot of a lens: all parallel light rays that impinge on the lens coalesce in a single point—the
focal point. From the mathematical viewpoint, caustics are singularities of differentiable mappings [43, 44] and
also occur in the spectral domain [45]. The notion of spectral caustics enables us to explain why the plateau
region in the frequency spectrum is not flat, but has peaks at certain frequencies.

Our paper is organised as follows: in section 2 we describe the physical system, and lay out the basic theory,
providing an expression for the QED cross section. Moreover, numerical results are provided for the complex
frequency spectra of the scattered x-rays. From a semiclassical analysis of the scattering dynamics in section 3 we
conclude that the peaks in the frequency spectrum can be interpreted as spectral caustics, and we calculate the
caustic peak locations. In section 4 we discuss a possible scenario for the experimental observation of the spectral
caustic peaks, taking into account various non-ideal effects. We summarise and conclude in section 5. In two
appendices we give a brief derivation of the cross section (appendix A) and we present a method to efficiently
calculate frequency-averaged spectra (appendix B).

2. Theoretical description: the QED cross section

In our theoretical modelling of laser-assisted Compton scattering we describe the incident light of the XFEL (X)
and assisting laser (L) as pulsed plane waves with frequencies wy 1 and durations Ty ;. They copropagate along
the z-direction, described by the unit four-vector #n* = (1, 0, 0, 1), with mutually orthogonal linear
polarisation four-vectors € ; . That means the laser photon four-momentum is given by k{' = wy n and
k{ = wxn* for the x-rays accordingly. These light pulses scatter off a free electron that has the four-momentum
p prior to the interaction. We assume the x-rays to be a weak field in the sense that just one x-ray photon
interacts with the electron in a single scattering event [34]. The scattered x-ray photon has four-momentum
k' = w'n'", with frequency w’ and scattering direction n'** = (1, sin¥J cos , sin 1 sin ¢, cos19), where 9 is
the scattering angle, measured from the initial laser beam direction, and ¢ denotes the azimuthal angle relative to
the laser polarisation direction. We employ units with /7 = ¢ = 1and the fine structure constant o = /4.
Scalar products between four-vectors are denoted as x - p = x%° — xp.

In order to calculate the cross section for laser-assisted Compton scattering in an intense laser pulse with
ao 2 litisnecessary to treat the interaction of the electrons with the assisting laser non-perturbatively. This can
be achieved by working in the Furry picture, where the electron dynamics in the laser field is described by means
of Volkov states [46] and the emission of photons by these laser-dressed electrons is treated in perturbation
theory [13, 47]. The frequency- and angle-differential cross section for laser-assisted Compton scattering can be
expressed as

d2o B aw’ <|M|2>
dw'dQ g2 fjc do g2(9) e p)k-p — ke - k)’

(1

where gx denotes the temporal envelope of the x-ray pulse, ¢ = wy (t — z) is the laser phase, and M refers to
the scattering amplitude. For unpolarised electrons and unobserved polarisation of the scattered x-rays, the
squared scattering amplitude can be conveniently represented as a double-integral over the laser phase ¢

[ o, 2 .
(IME) =2 [[dodd’ (@) (@) ”(n - 20} — T [ (6) ~ a6 )12]. @

Some details of the derivation of equations (1) and (2) are provided in appendix A. Here, a; (¢) denotes the
laser’s normalised vector potential and we abbreviate
2
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Figure 1. Frequency spectrum of x-rays that are Compton scattered off laser-driven electrons (a) as a function of the scattered x-rays’
frequency w' (upper axis) and the energy transfer # (lower axis). The initial x-ray pulse has a frequency of wx = 5 keV and a duration
of Tx = 7 fs. Theassistinglaser field that drives the electron-motion has peak amplitude ay = 1, frequency w;=1.55 eV and pulse
duration Tj, = 5 fs. The insets magnify the highly oscillatory structure of the spectrum for three frequency ranges. Panel (b) depicts
the function ¢ (¢) from inverting (7), which determines the number and positions of the stationary points for a given value of £.
Spectral caustics appear at those £ where the function ¢ (£) has vertical tangents and two stationary points coalesce (vertical dotted
lines).

The phase of the scattering amplitude (2) is determined by

!/
n' vy (o)
66, ) = (¢ + 0D @
n v
where 2z = wy/wy denotes the ratio of the x-ray and assisting laser frequencies.
The Lorentz invariant quantity £ describes the energy transfer from the laser field to the scattered x-ray
photon and determines its frequency ' via the nonlinear x-ray—optical frequency mixing [34, 48]:

(wx + fwpn - p )

/
) = .
w(©) p-n + (wx + fwpn - n’

The effective range of ¢, and hence also w', canbe quite large even for ag < 1, reachingvalues of £ ~ ay. for
large frequency ratios s [34].

Expression (4) that determines the phase of the scattering amplitude depends on the four-velocity of a
classical electron moving in the laser field af' (¢)

a(@) v ,a(¢) ©

n-v 2n - vy

vi' (@) = v — af'(¢) + n*

where v’ = p#/m is the electron’s four-velocity before the laser pulse arrives. In equation (6), the terms linear
in a; describe the electron’s quiver motion due to the laser electric field with frequency wy . The at-term
describes the interaction with the magnetic field and comprises both a longitudinal 2w oscillation and a
ponderomotive drift [12, 49, 50]. The superposition of the wy and 2wy oscillations is often denoted as ‘figure 8’
motion.

Figure 1 (a) displays the frequency spectrum of Compton scattered x-rays, equation (1), for a scattering angle
of ¥ = 45° in the plane of the laser polarisation, ¢ = 0. For convenience, from now on we work in the rest
frame of the initial electron, where v{' = (1, 0, 0, 0). We find a narrow large peak of laser-free Compton
scatteringat ¢ = 0, which stems from x-ray photons that scatter outside the assisting laser pulse and, hence,
with no energy exchanged between the electron and the laser field. Due to the action of the laser field and the
frequency mixing (5) the spectrum has a broad structured plateau region between 3 and 11 keV with a number
prominent large peak structures that we identify below as spectral caustics. In the regions between the caustics
the spectrum is a highly oscillating function of w’ on the scale of sub-eV, as can be seen in the insets of
figure 1 (a).
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3. Semiclassical interpretation of the spectral peaks as spectral caustics

To gain an intuitive understanding for the complex peak structure in the spectrum in figure 1 and their relation
to the laser-driven electron motion, equation (6), it is useful to put forth a semiclassical trajectory picture by
applying a stationary phase analysis [26, 51, 52]. For laser-induced strong-field QED processes, discussed e.g.
[26,52], such a semiclassical picture is valid only for ay > 1. Here, for the laser-assisted Compton scattering
process the condition sa1y > 1is sufficient. That means a semiclassical trajectory picture becomes reliable
already for ay ~ 1for alarge ratio of the frequency scales of the hard QED process and the assisting laser field

2 = wy/wy > L. Since the integrand of (2) is a highly oscillating function of the laser phase ¢ for g2z > 1, the
scattering amplitude, equation (2), is formed mainly at those laser phases that fulfil the stationarity condition

¥ (¢, £) = 0. Solving this implicit equation maps the scattering of x-ray photons at a certain moment ¢ to one
particular value of the energy transfer

!
£(¢) = o | —20 — 1) 7

(@) (n’~VL(¢) ()
and, by means of equation (5), to one unique frequency w’ (). The semiclassical analysis of the laser-assisted
Compton scattering process facilitates the following interpretation: the laser-driven electron moves classically
according to equation (6), up to the laser phase ¢, where the x-ray photon scatters off the electron. At the
moment of scattering the electron has acquired the velocity v{' (¢) due to its interaction with the assisting laser
field. Because the x-ray photon now scatters off a relativistic electron, its frequency is Doppler shifted [33], and
the Doppler shift

n-vy

n' v ()

depends on the angle between the scattering direction ' and the instantaneous electron four-velocity v{ (¢) at
the moment of scattering. The Doppler factor becomes maximal when the photon is scattered in the direction of
the instantaneous electron three-velocity v; (¢). Then, the four-vector product n’ - v (¢) is as small as possible
since the three-vectors n’ and vy (¢) are parallel. With the help of D (¢), the instantaneous frequency of the
scattered x-rays can be written as

(o) = ®)

D(P)wx

W(§) = — ©)
1+ E ©(¢)wx

Thus, in the semiclassical picture the broad plateau in the frequency spectrum in figure 1 is formed because the
x-ray photons scatter off accelerated electrons with a variable Doppler factor. Moreover, the frequency red-shift
due to the electron recoil—the second term in the denominator of equation (9)—depends also on the instant of
scattering.

The structures observed in the plateau-region of the spectrum in figure 1 can be explained by elaborating
further the semiclassical picture of the laser-assisted QED scattering process. The semiclassical mapping (7),
relates a moment of scattering ¢ to a unique energy transfer £ (¢). However, as seen from figure 1 (b), the inverse
function ¢ (¢) is multiple-valued. Thus, the probability to observe a scattered x-ray photon with a particular
frequency w’ (¢) is determined by multiple stationary points. The contributions to the squared scattering
amplitude from different stationary phase points interfere and that leads to the highly oscillatory behaviour of
the frequency spectrum in figure 1. For instance, in the region around # & 3000 two stationary points
contribute to the scattering amplitude, leading to a cosine-like oscillation of the spectrum (right inset), while
around ¢ =~ 900 (middle inset) a total of six stationary points are relevant providing a more complex structure
with multiple oscillation periods.

We now come to an interpretation of the large sharp peaks in the plateau region of the frequency spectrum.
These peaks occur at those values of £, where two branches of ¢ (£) merge, i.e. two stationary points coalesce,
and the function ¢ (¢) has vertical tangents, see figure 1. Such singularities of the semiclassical mapping ¢ (¢) are
spectral caustics, specifically caustics of the fold-type A,, i.e. locally the semiclassical mapping can be
approximated by a polynomial ¢? + const. = 0 [44]. Moreover, the stationary phase approximation of the
squared matrix element diverges at the caustics. By using a uniform asymptotic expansion the caustic
contribution to the the spectrum can be approximated as an Airy function [44]. As caustics, the spectral peaks
have some universal properties such as the their asymmetric shape, and they are characterised by universal
indices. For instance, the so-called index of the caustic zone a. = 2/3 allows to give an order of magnitude
estimate for the width of the spectral caustic peaks as AZ ~ (ay.2 )2/, and which agrees fairly well with our
numerical calculations.

However, how can one understand the existence of the spectral caustic peaks from a physical viewpoint? The
divergence of ¢ (¢) implies that the caustics are formed at those parts of the electron trajectory where the
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Doppler factor D (¢,) becomes stationary, ® (¢,) = 0, and the scattered x-rays have constant frequency over a
long phase region. This generates a peak in the spectrum by ‘focusing’ the scattered radiation to the spectral
caustic peak at w’ (¢,). The stationarity of the Doppler factor implies that at the caustic formation phase ¢, the
four-acceleration of the electron is perpendicular to the scattering direction: r’ - v (¢.) = 0.

Let us now calculate, within the semiclassical picture, the locations of the spectral caustic peaks in the
frequency spectrum of the scattered x-rays and how they depend on the scattering direction . For that, we first
have to solve the caustic condition 1" - v1(¢) = 0 for the phase ¢, where the caustics are formed. Employing
equation (6), we can write the caustic condition as

0 = fi (¢Jlaof, () — B, 9)], (10)
with the laser pulse shape f; and
B, o) = S8esin? an
cost¥ — 1

Because equation (10) consists of the product of two terms we actually find two different classes of spectral
caustics with distinct properties, which we denote as regular and irregular caustics, respectively.

The positions of the regular caustic peaks in the frequency spectrum can be determined by solving
fL (¢.) = 0 for the caustic formation phases ¢_. For instance, for laser pulses f; = g cos(¢ + ¢,) with a slowly
varying envelope gi, with ¢ /g < 1, and the carrier envelope phase ¢, the caustics are formed at the laser
phases d)?” ~ nm — ¢, n = 0, £1, .... For ultra-short pulses, with g /¢ ~ 1, the caustic formation phases
(;52”) need to be obtained numerically. Plugging the solutions for (;Si”) into equation (7), we obtain the locations of
the regular spectral caustics at

(n)
P N S
Z’ﬂreg_f(d)c )_}{l—f(”)’

2
€00 = (= 1y lagg (™ )cos @ sind) — (%ng(qﬁ(c"))(l — cos®). (12)

They depend on the value of the laser vector potential ay, (gbi”)) atitslocal extrema, and, therefore, on the carrier
envelope phase ¢, and on the shape and duration of the pulse, see figure 2.

Let us now discuss what this tells us about the locations and the distribution of the spectral caustic peaks in
the plateau region. Consider first a smooth laser pulse, e.g. with a squared cosine envelope

) TP
cos , 9] < w1y,
g.() = 20T ot (13)

0, elsewhere,

with pulse duration T;. Because the envelope smoothly increases from 0 to 1, the laser pulse envelope at the
caustic formation phase g (¢£”)) can take any value between zero and one. Thus, the spectral caustics (12) are
equally distributed over the whole plateau region of the spectrum, as can be seen well in figure 2, panels (a)—(c).
The number of different spectral caustic peaks in the panels (a)—(c) grows with increasing laser pulse duration T
because the number of local extrema of a; (¢) increases with Ty (see insets in figure 2). In order to resolve the
individual caustic peaks, their separation should be larger larger than their individual width AZ ~ (aq2)*/>.
This gives the order of magnitude estimate of the optimal laser pulse duration as wy Tj, ~ (ag2)"/>.

The situation is quite different for a box-shaped envelope with a constant amplitude, see figure 2 (d). Only
two regular caustic peaks occur at the endpoints of the plateau, and irrespective of the pulse duration. The reason
for this behaviour is that g (gbi”)) = 1for all caustic formation phases (;S(C”). This ‘wing’-like shape of the plateau
is a generic feature of laser-assisted processes when the laser pulse has a constant amplitude and was also seen in
laser-assisted electron-ion recombination [20]. Hence, in order to describe the peaks in the frequency spectrum
correctly it is essential to exactly take into account the shape of the short laser pulse.

Let us now consider the irregular type of caustics. In contrast to the regular caustics, the irregular type is
restricted to certain observation directions. (So far we were discussing only those directions where solely regular
caustics exist.)The irregular caustic occurs where f; (¢.) = B(¥, ¢)/a, admits at least one real solution for ¢..
In stark contrast to the regular caustics discussed above the location of the irregular caustic peak at

¢ _1- cos? _,
e C ¢ — B0, ¢), (14)

firr =
isindependent of the laser pulse parameters. Although f; (¢.) = B(¥J, ¢)/a, might have more than one
solution ¢, there will be only a single spectral caustic peak in the frequency spectrum. If it exists, the irregular
caustic peak always marks the high-energy cut-off of the frequency spectrum.

5
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Figure 2. The number and locations of the spectral caustic peaks in frequency spectrum of the scattered x-rays depends on both the
shape and duration of the driving optical laser pulse (here with peak amplitude ay = 0.3). The spectra are window-averaged (by a
Gaussian with resolution 5 eV) to smooth the fast oscillations. Calculations are for a squared-cosine pulse with pulse durations

T, = 5fs(a), 10 fs(b)and 15 fs (c), and for a box shaped pulse with duration 9.34 fs (d). The vertical lines depict the calculated
locations of the spectral caustics. The large laser-free Compton peak at ' = 4.95 keV stems from the long x-ray pulse duration

Tq = 25fs > T.

The irregular caustic peak is related to the longitudinal nonlinear motion of the electrons due to the a;—
term in the classical electron velocity, equation (6). Therefore, it can occur only for large enough scattering
angles ¥ > 1J,, where one probes dominantly the longitudinal components of the electron velocity (6).

2 2
. . . . ay — Cos
An approximate analytic expression for the angle 9J, can be given as 9, =~ arccos -3 2
ag + cos?p
0

which gives

¥, =~ 67° for the parameters in figure 3. Exactly at the angle ¥ = 1}, abranching of the caustics occurs. Close to
the branchingangle ¥ ~ J, the semiclassical mapping (7) needs to be approximated locally by a fourth-order
polynomial ¢* + h(9)$? + const. = 0, with a conveniently rescaled laser phase ¢. The coefficient h () isa
monotonically decreasing function of ¥, with a single zero at ¢ = 1,, where h changes its sign. Hence, for

¥ < 9, we find only a single extremal pointat ¢ = 0, corresponding to a regular caustic. At 9 > 9, we find in
total three extrema: the one at ¢ = 0 remains, while two additional solutions at ¢ = +./—h/2 give rise to the
irregular caustic peak.

The Doppler up-shift of the x-ray frequency for backward-scattering (i.e. for large scattering angles) is
limited by the longitudinal ponderomotive drift of the electron away from the observer. This is related to the
forward-backward asymmetry seen in figure 3 (a), where high-energy photons are emitted only for ¢ < 90°.
Thus, the existence of the irregular caustic peak in the spectrum signals the nonlinear relativistic motion of the
electrons, which comprises both the longitudinal ponderomotive drift and 2w oscillations. In fact, the
semiclassical mapping £ (¢), equation (7), exhibited in figures 3 (b) and (c), shows distinct 2w;—oscillations
wherever the irregular caustic peak exists.

4. Discussion

Experiments on laser-assisted Compton scattering to verify the spectral caustic peaks in the spectrum could be
done, e.g. at the future HIBEF beamline at the European XFEL [53] or the LCLS, where an intense optical laser
beam is synchronised to the XFEL x-ray pulses. One could, for instance, scatter the x-rays off

6
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Figure 3. The frequency- and angle-differential cross section for a; = 1.5, windowed by a Gaussian of 10 eV width (a). The pattern of
the sharp peaks in the spectrum qualitatively coincides with the locations of the regular (grey dotted curves) and irregular (black solid
curve) spectral caustics in the inset. The red dashed curve is the laser-free Compton line. Parameters are as in figure 1. In (b) and (c) the
energy transfer £ (¢) oscillates with a frequency 2wy close to the irregular caustics. The horizontal lines have the same meaning as in
the inset of panel (a).

counterpropagating low-energy electrons with kinetic energies (of a few keV) emitted from an electron gun [54].
The principal set-up of such a scenario was discussed previously in [34], where the observation of the plateau,
i.e. the x-ray—optical frequency mixing, was proposed by a using an x-ray detector with a coarse spectral
resolution of (100 eV), characteristic for an x-ray CCD. Obviously it is impossible to resolve the individual
caustic peaks, with such a coarse spectral resolution. We will return to the case of a detector with coarse
resolution at the end of this section. But let us first discuss what would be required to actually see the spectral
caustic peaks themselves. In order to resolve the spectral caustic structures in the plateau region of the frequency
spectrum one of course needs x-ray detectors with a much better energy resolution than the ones discussed
above. Microcalorimeter arrays, as an example, provide the necessary spectral resolution in a large frequency
range from a few keV up to several 100 keV [55, 56]. For instance, in [56], a spectral resolution of 2 eV FWHM
was reported for x-rays up to 6 keV.

In order to assess the observability of the spectral caustic peaks we need to discuss several non-ideal effects.
Firstly, we need to take into consideration that each detector has a finite size and therefore covers a finite solid
angle range. Since the positions of the caustics in the spectrum depend sensitively on the scattering angles (9, )
one might argue that the caustic peaks could disappear from the spectrum when a finite-sized detector collects
photons in different directions. To test the viability of our results with regard to a finite detector size we integrate
the frequency- and angle-differential cross section, equation (1), over the solid angle range 85° < ¢ < 95°and
175° < ¢ < 185°.In order to efficiently calculate the spectra for many different angles we employ the
approximation presented in appendix B. The results of the angular integration, exhibited in figure 4 (a), shows
that the spectral caustic peaks in fact do survive, despite becoming slightly broader.

As asecond important issue we have to take into account the rather low total scattering cross section for
x-rays on free electrons on the order of the Thomson cross section, oy ~ 665 mbarn, and the low electron
density in an electron beam. Therefore one most likely has to perform multi-shot experiments in order to record
the complete frequency spectrum. However, it is known that present-day high-intensity lasers suffer from shot-
to-shot fluctuations of, e.g., the pulse duration and peak intensity. Given the sensitive dependence of the
predicted caustic peak positions on the laser pulse parameters one might again argue that those fluctuations
could completely wash out all spectral peaks. This, however, is not the case. To confirm that the spectral caustic
peaks survive shot-to-shot fluctuations when averaging over multiple laser shots, we calculate an ensemble of
spectra for fluctuating values of a and Ty, respectively, and weighted them with a Gaussian distribution with
10% FWHM, and centred around a, = 0.3, respectively T = 5 fs. The averaged spectra are exhibited in
figures 4 (b) and (c) and show that the caustic peaks are still visible, despite being broadened.

The positions of the caustic peaks are insensitive with regard to the amplitude and duration of the x-ray
pulse, because the laser-assisted Compton process is linear in the incident x-ray photon field. The caustic peak
positions are determined solely by the strong assisting laser pulse and the relativistic electron motion it causes.
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Averaging over fluctuating values of ay. (c) Averaging over fluctuating laser pulse duration T7. For details see the text.

Since a good temporal overlap of the x-ray and assisting laser pulses is required, and taking into account the
temporal jitter of both pulses, the best scenario would involve an x-ray pulse duration 2...3 times longer than
the duration of the assisting laser pulse. The x-rays that are scattered outside the assisting laser pulse just
contribute to the laser-free Compton line at # = 0, and do not affect the spectrum in the plateau region where
the spectral caustics occur.

The actual source size of the scattered x-ray photons in the plateau region of the spectra is just the spatial
volume where the two foci of the x-ray beam and the assisting laser beam overlap. Only rather moderate laser
intensities of 10'7...10'8 W cm ™% (e.g. a9 = 0.3 correspondsto 2 x 107 W ¢cm™*at a wavelength of 800 nm)
are required to observe the spectral caustic features. Such intensities can be routinely obtained by even
moderately sized high-intensity lasers (a few terawatts) in quite large spot sizes of several tens of ym, and with
high repetition rates. Focusing the XFEL beam to a considerably smaller size than the focal spot size of the
assisting laser field, say a few um, one can achieve a homogeneous intensity of the assisting laser field over the
whole interaction region. Thus, the approximation of a constant a, over the interaction region (plane-wave
approximation) is well justified.

We also need to take into account that in reality the initial electron cannot be at rest because it would be
expelled from the high-intensity regions by ponderomotive scattering [57, 58]. However, the minimum kinetic
energy of the electrons that is required to access the laser focal spot is on the order of a few keV or less [34]. For
such low-energy electron beams the patterns of caustics in the laboratory frame virtually coincide even
quantitatively with the spectra in the rest frame of the incident electron which we presented here. For electrons
with higher energies that counterpropagate the incident light beams with four-velocity v = (v, 0, 0, —37),
where 7y refers to the Lorentz factor of the electronand 3 = /1 — y72, the spectra from the rest-frame of the
electron need to be Lorentz-transformed to the laboratory frame. This concerns in particular the frequency w’
and the scattering angle ¥ of the scattered photon, which transform as

Wiy = W'y (1 — Bcos?), (15)
costt — 0

Vb = ————. 16

o8 lab 1 — Bcos?d (16)

The azimuthal angle ¢ needs not to be Lorentz transformed for head-on collisions. For the scattering off high-
energy electrons with v > 1, the x-ray photons would be dominantly scattered into a narrow cone with aperture
angle ¥y,, ~ 1/ around the direction of the incident electron beam. Moreover, the scattered photons
frequency is additionally Doppler up-shifted as is well known from inverse Compton x-ray sources [50, 59-63],
see for instance equation (8), where, e.g., n - vy = v(1 + () > 1. Therefore, the scattering off low-energy
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Figure 5. Coarse-grained frequency spectra. The frequency spectra have been window-averaged with 100 eV width, mimickinga
detector with a coarse spectral resolution (solid curves). We compare a smooth cos® pulse (blue) and a pulse with constant amplitude
(red). Although the individual caustic peaks cannot be resolved, the shape of the plateau strongly depends on the shape of the assisting
laser pulse which determines the positions of the caustic peaks in the plateau. For convenience, we exhibit by the dashed curves the
spectra averaged with 10 eV detector resolution, where the distribution of the caustic peaks is still clearly visible.

electrons seems to be favourable because the scattered photons can be observed at a large scattering angle to
better discriminate them from the beam of incident photons.

Because the X and L beams are parallel, the frequency ratio of the x-ray photons and the laser light,

2 = wx/wr, is Lorentz invariant, although each of the frequencies has to be Lorentz transformed individually
when changing the frame of reference. The laser strength ay is Lorentz invariant as well [64]. That means no
qualitatively different results are to be expected for the scattering off high-energy electrons. In addition, the
energy transfer £ is a Lorentz invariant quantity and allows to characterise the frequency of the emitted photons
in a Lorentz-invariant way via equation (5).

Let us finally discuss the case that the spectral resolution of our detector is too coarse to observe the
individual caustic peaks. In figure 5 we show the spectra of the scattered x-rays for a detector resolution of 100
eV. Although the individual caustic peaks cannot be resolved due to the coarse detector resolution, the shape of
the plateau strongly depends on the shape of the laser pulse. For the smooth cos? laser pulse (solid blue curve
and left inset) the caustic peaks are distributed over the whole plateau (dotted blue curve) and the coarse-grained
spectrum shows a single peak close to the laser-free Compton line at about 5 keV, with falling shoulders up to the
cut-off values at about 4 keV and 6.3 keV, respectively. In contrast to that, in the box-shaped pulse with a
constant amplitude of the assisting laser, the caustic peaks occur only at the end-points of the plateau.
Consequently, the coarse-grained spectrum has two peaks close to the cut-offs of the plateau. This shows that
even if the details of the spectral caustic peaks are not resolved, their presence still influences the shape of the
spectrum.

5. Summary and conclusions

In summary, we study for the first time the details of the frequency spectrum of x-rays that are Compton
scattered off an electron under the action of an intense ultra-short optical laser pulse. In this laser-assisted
Compton scattering of x-ray photons the frequency spectrum of the scattered x-rays shows novel features: a
structured broad plateau region beneath the laser-free Compton line that indicates a highly nonlinear mixing of
laser and x-ray photons. According to the QED calculation, the plateau region contains a number of sharp peaks
that are related to the ultra-short duration of the assisting laser pulse. These peaks are explained by means of a
semiclassical picture as spectral caustics with universal properties.

The laser-assisted Compton scattering of x-rays, and the peaks in the frequency spectrum, may be used to
investigate the dynamics of laser-driven electrons in more general situations, where the electrons are also subject
to forces other than the laser field. The three-dimensional electron motion could be accessed by observing
tomographically the frequency spectrum of Compton scattered x-rays for different scattering directions n’. For
instance, this might be useful to investigate the complex laser-driven electron dynamics at the surface of a dense
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plasma, and could help to better understand the collisionless absorption of laser energy [65, 66], and its
implications for plasma-based particle acceleration [67].

We finally note that the spectral caustics are a general concept. They could help understand also the
dynamics of other laser-assisted scattering processes in ultra-short laser pulses [21, 23, 68]. For short laser pulses
the spectral caustic peaks inevitably appear in the plateau regions of the spectra, and a proper description of the
scattering dynamics with respect to the short laser pulse duration is mandatory. This is even true if the
experimental conditions do not allow the direct observation of the individual caustic peaks, because their
distribution over the plateau strongly affects the shape of the coarse-grained frequency spectra.
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Appendix A. Derivation of the differential cross section

The strong-field S matrix for laser-assisted Compton scattering of an x-ray photon from a short coherent XFEL
pulse can be acquired by first formulating the Furry picture of strong field QED with respect to both the (weak)
XFEL and (strong) assisting laser pulses. The resulting expressions are then linearised in the normalised
amplitude of the XFEL pulse axy < 1[69, 70]. The S matrix can be represented as [34]

S = —dier ax 6%(p — p' — KYM(?), (A.1)

with the light-front delta function
1 - -
Sibp — ¢ =K = —0(p —p =K 6D (p.—pl — kD) (A.2)
L

and the light-front components of four-vectors p* = p° + p*and p, =(p', p?). Here, p (p') refers to the
asymptotic four-momentum of the electron before (after) the scattering, while k’ is the four-momentum of the
scattered x-ray photon. Due to the delta function in equation (A.1), the ‘-’ and ‘ L.’ momentum components
fulfil conservation conditions, which can be written as

n-p=n-p +n-k and exL-p=exr-p +exL- k. (A.3)
The scattering amplitude

2
M1, 1", X) = Vi(r, 1, X)Co(&) — ax Y Valr, v, X)Cu(©), (A4)

n=0

depends on the electron spin (r, r’) and photon polarisation (X) variables via the Dirac currents
Vi(r, r', X) = 5;,“ ity (V) thpr, where up,, denote Dirac spinors, with the Dirac adjoint ,, = u;, ~°,and

normalised to i, u,’ = 2md,, . The Dirac matrix structures read

pr

Vo = (A.5)
WV = m(i LK Llie 4 O K“ZL], (A6)

ZkL - p 2kL - p

m? Ky kr,
Wy = ———— (A7)
2p . kLp . kL

Vs = m ZXK”ﬁ‘ wukxzx ) (A.8)

2kx - p 2kx - p

Here we employ the Feynman slash notation g = y - p to denote scalar products of four-vectors with the Dirac
matrices /. The dynamic integrals over the laser phase read

Cu0) = [d0 gy afi@) &L 90, (A9)

with ¢ (¢, ¢) defined in equation (4). To calculate the differential cross section we have to square the S matrix
(A.1), multiply by the Lorentz invariant phase space of the final particles in the form

10



I0P Publishing

NewJ. Phys. 18 (2016) 023044 D Seiptet al

s
CemPd @ry

(A.10)

multiply with a normalisation factor of 1/2p~ for the incident Volkov electron state [71], and divide by the
fluence of the incident x-rays

1 [ ;
Jx=—| doéT¥n =
wx v —o0 8

m

2‘1)2( o0 2
d , A1l
- foo $ 2(9) (A11)

with the energy—momentum-tensor T{" of the incident x-ray pulse. Then, the differential cross section for laser-
assisted Compton scattering reads
Y, NE
do(r'y r, ) = ——dII (A.12)
2p7 Jx

2w’ M, 1,7, X))

= — dw'dQ, (A.13)
s [~ dogi) kopkd

and smoothly approaches the laser-free Klein—Nishina cross section in the limit ap — 0[34, 72]. Note that the
cross section (A.13) is independent of the intensity of the XFEL beam and all dependence on ax drops out.

Since we assume that the incident electrons are unpolarised, and we consider the polarisation of the final
state particles unobserved, we have to average and sum over the respective variables, defining the polarisation
averaged squared matrix element as

(IMP) = L STIME ry rl X (A.14)

1N\
rr' X

The summation over the spin variables leads to traces over the Dirac matrices that occur in the coefficients in
equations (A.5)—(A.8). We define the Dirac traces as

1 1 _
Tw== > Va (V) = —S UL+ mO(p + m Vi, (A.15)
rr X
where we employ the identities >y (5&‘,)*%, = —g", > upily = § + m,and V = 7V’ The Dirac traces
read (note the symmetry 7, = 7T,y,,)

Too = —8m? + 4p’ - p, (A.16)
Tio=2 (k- k') au, (A.17)
Tso =2 (k¢ - k') ax, (A.18)
T = —2m?, (A.19)
T =T = 2m) (A.20)
and all other combinations vanish. We use here the definitions from equation (2), and in addition
!
ap = m[q—p, - u). (A.21)
k-p° k-p
Collecting all the non-vanishing Dirac traces, and using the identity
m?x
£C(¢) = —arLG(%) + G (%) (A.22)
2 kL - p

we finally arrive at the expressions (1) and (2) for the polarisation averaged cross section and squared amplitude,
respectively.

Appendix B. Efficient calculation of frequency averaged spectra

In this appendix we describe a method to efficiently calculate the window-averaged frequency spectra as
exhibited, e.g., in figures 2 and 4. The integration of the squared matrix element (2) is numerically quite
demanding because the integrand is a highly oscillating function of the laser phase. Moreover, because the
frequency spectra are highly oscillating functions of the scattered photon energy one needs to calculate the
spectra with a high precision to obtain a reliable frequency average. For the frequency-averaged spectra the
highly oscillatory structure itself is irrelevant. The approximation presented here reduces the numerical cost in
two ways: (i) one needs to calculate the spectrum at fewer points and (ii) the calculation of each point is
accelerated.

11
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Figure B1. A direct comparison of the smoothed full spectrum (red solid curve) and the approximation (blue dashed curve) shows
excellent agreement, i.e. the dashed blue curve is on top of the solid red curve. For the full spectrum the squared matrix element has
been evaluated using equation (2), while we use equation (B.3) with A = 0.5 for the approximated spectrum. Both of the spectra are
then frequency averaged with the same window size of 15 eV. For comparison we also show the approximation (B.3) without the
additional frequency average (black dotted curve), as well as the unsmoothed highly oscillating full spectrum (solid grey). Parameters
are: ap = 0.3, T, = 10 fs, Tx = 15 fs, cos? pulse envelopes, ¥ = 45°, ¢ = 0.

As we found in our semiclassical analysis, the highly oscillatory behaviour of the spectrum stems from the
interference of distant stationary points. In order to suppress these spectral oscillations, we can include a
(Gaussian) window function

(46—

wa(p — @) =e (B.1)

to the integrand of equation (2), which suppresses the interference contributions for all phase points that are
further apart than the window size A. The inverse of A is related to a frequency averaging window: the shorter
the window size A, the coarser the energy resolution.

By introducing the relative and mean phase variables, § = ¢ — ¢ and 7 = (¢ + ¢)/2,and by requiringa
small window size, A < 1, we may assume that # < 1, to obtain for the short-time windowed squared matrix
element:

T+0/ 2
TMP) = 22 [[dra g2 (ryws @) o d"“’”(n 20} - X af(T)]
= Q2 m*n — 4 m2a%) de gz (1) fd9 T itV (1.0) (B.2)

where the third term in parentheses in the first line is of higher order in A and can be neglected. Evaluating the
Gaussian integral over df we finally find the simple expression

IMP) = 2 m¥) — 4 mPa) Jan 2 f dr g2(r)e S0, (B.3)

which can be efficiently evaluated numerically. In particular, the exponent is now real and negative, i.e. the
integrand is not a highly oscillating function anymore. In figure B1 we compare the frequency averaged spectra
calculated using the exact squared matrix element (2) with the approximation equation (B.3). As can be inferred
from figure B1 the accuracy of the approximation is excellent.

Taking in equation (B.3) the formal limit A — oo we get

(MP) =" = @ min — 4mtad) 2r [dr gmo(r, )

27rgX ()

B.4
G2 4

=2 m™n — 4 m’a )Z

where the sum runs over all stationary points (7, £) = 0. This coincides with the usual stationary phase
approximation of (2) with the interferences between different stationary points j = j’ excluded.

12
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