1,763 research outputs found

    Matrix Structure Exploitation in Generalized Eigenproblems Arising in Density Functional Theory

    Full text link
    In this short paper, the authors report a new computational approach in the context of Density Functional Theory (DFT). It is shown how it is possible to speed up the self-consistent cycle (iteration) characterizing one of the most well-known DFT implementations: FLAPW. Generating the Hamiltonian and overlap matrices and solving the associated generalized eigenproblems Ax=λBxAx = \lambda Bx constitute the two most time-consuming fractions of each iteration. Two promising directions, implementing the new methodology, are presented that will ultimately improve the performance of the generalized eigensolver and save computational time.Comment: To appear in the proceedings of 8th International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2010

    Quantum Deconstruction of 5D SQCD

    Get PDF
    We deconstruct the fifth dimension of 5D SCQD with general numbers of colors and flavors and general 5D Chern-Simons level; the latter is adjusted by adding extra quarks to the 4D quiver. We use deconstruction as a non-stringy UV completion of the quantum 5D theory; to prove its usefulness, we compute quantum corrections to the SQCD_5 prepotential. We also explore the moduli/parameter space of the deconstructed SQCD_5 and show that for |K_CS| < N_F/2 it continues to negative values of 1/(g_5)^2. In many cases there are flop transitions connecting SQCD_5 to exotic 5D theories such as E0, and we present several examples of such transitions. We compare deconstruction to brane-web engineering of the same SQCD_5 and show that the phase diagram is the same in both cases; indeed, the two UV completions are in the same universality class, although they are not dual to each other. Hence, the phase structure of an SQCD_5 (and presumably any other 5D gauge theory) is inherently five-dimensional and does not depends on a UV completion.Comment: LaTeX+PStricks, 108 pages, 41 colored figures. Please print in colo

    Chiral Rings of Deconstructive [SU(n_c)]^N Quivers

    Full text link
    Dimensional deconstruction of 5D SQCD with general n_c, n_f and k_CS gives rise to 4D N=1 gauge theories with large quivers of SU(n_c) gauge factors. We construct the chiral rings of such [SU(n_c)]^N theories, off-shell and on-shell. Our results are broadly similar to the chiral rings of single U(n_c) theories with both adjoint and fundamental matter, but there are also some noteworthy differences such as nonlocal meson-like operators where the quark and antiquark fields belong to different nodes of the quiver. And because our gauge groups are SU(n_c) rather than U(n_c), our chiral rings also contain a whole zoo of baryonic and antibaryonic operators.Comment: 93 pages, LaTeX, PSTricks macros; 1 reference added in v

    High-performance functional renormalization group calculations for interacting fermions

    Get PDF
    We derive a novel computational scheme for functional Renormalization Group (fRG) calculations for interacting fermions on 2D lattices. The scheme is based on the exchange parametrization fRG for the two-fermion interaction, with additional insertions of truncated partitions of unity. These insertions decouple the fermionic propagators from the exchange propagators and lead to a separation of the underlying equations. We demonstrate that this separation is numerically advantageous and may pave the way for refined, large-scale computational investigations even in the case of complex multiband systems. Furthermore, on the basis of speedup data gained from our implementation, it is shown that this new variant facilitates efficient calculations on a large number of multi-core CPUs. We apply the scheme to the tt,tt' Hubbard model on a square lattice to analyze the convergence of the results with the bond length of the truncation of the partition of unity. In most parameter areas, a fast convergence can be observed. Finally, we compare to previous results in order to relate our approach to other fRG studies.Comment: 26 pages, 9 figure

    On the Performance Prediction of BLAS-based Tensor Contractions

    Full text link
    Tensor operations are surging as the computational building blocks for a variety of scientific simulations and the development of high-performance kernels for such operations is known to be a challenging task. While for operations on one- and two-dimensional tensors there exist standardized interfaces and highly-optimized libraries (BLAS), for higher dimensional tensors neither standards nor highly-tuned implementations exist yet. In this paper, we consider contractions between two tensors of arbitrary dimensionality and take on the challenge of generating high-performance implementations by resorting to sequences of BLAS kernels. The approach consists in breaking the contraction down into operations that only involve matrices or vectors. Since in general there are many alternative ways of decomposing a contraction, we are able to methodically derive a large family of algorithms. The main contribution of this paper is a systematic methodology to accurately identify the fastest algorithms in the bunch, without executing them. The goal is instead accomplished with the help of a set of cache-aware micro-benchmarks for the underlying BLAS kernels. The predictions we construct from such benchmarks allow us to reliably single out the best-performing algorithms in a tiny fraction of the time taken by the direct execution of the algorithms.Comment: Submitted to PMBS1
    corecore