43 research outputs found

    A new model for heating of Solar North Polar Coronal Hole

    Full text link
    This paper presents a new model of North Polar Coronal Hole (NPCH) to study dissipation/propagation of MHD waves. We investigate the effects of the isotropic viscosity and heat conduction on the propagation characteristics of the MHD waves in NPCH. We first model NPCH by considering the differences in radial as well as in the direction perpendicular to the line of sight (\textit{los}) in temperature, particle number density and non-thermal velocities between plumes and interplume lanes for the specific case of \ion{O}{VI} ions. This model includes parallel and perpendicular (to the magnetic field) heat conduction and viscous dissipation. Next, we derive the dispersion relations for the MHD waves in the case of absence and presence of parallel heat conduction. In the case of absence of parallel heat conduction, we find that MHD wave dissipation strongly depends on the viscosity for modified acoustic and Alfven waves. The energy flux density of acoustic waves varies between 104.710^{4.7} and 107 erg cm−2 s−110^7 \,erg\,cm^{-2}\,s^{-1} while the energy flux density of Alfven waves turned out to be between 106−108.6 erg cm−2 s−1 10^6-10^{8.6} \,erg\,cm^{-2}\,s^{-1}. But, solutions of the magnetoacustic waves show that the parallel heat conduction introduce anomalous dispersion to the NPCH plasma wherein the group velocity of waves exceeds the speed of light in vacuum. Our results suggests all these waves may provide significant source for the observed preferential accelerating and heating of \ion{O}{VI} ions, in turn coronal plasma heating and an extra accelerating agent for fast solar wind in NPCH.Comment: 17 pages, 11 figures, Submitted to MNRA

    Finite Larmor Radius Effects on Weakly Magnetized, Dilute Plasmas

    Full text link
    We investigate the stability properties of a hot, dilute and differentially rotating weakly magnetized plasma which is believed to be found in the interstellar medium of galaxies and protogalaxies and in the low-density accretion flows around some giant black holes like the one in the Galactic center. In the linear MHD regime, we consider the combined effects of gyroviscosity and parallel viscosity on the magnetorotational instability. The helical magnetic field is considered in the investigation. We show that the gyroviscous effect and the pitch angles cause a powerful gyroviscous instability. Furthermore, in most of the cases, plasma with the above mentioned properties is unstable and the growth rates of the unstable modes are larger than that of the magnetorotational instability.Comment: 7 pages, 4 figures. Accepted for publication in MNRA

    Anxiety disorders in headache patients in a specialised clinic: prevalence and symptoms in comparison to patients in a general neurological clinic

    Get PDF
    Data from several studies indicate an association of headache with anxiety disorders. In this study, we assessed and differentiated anxiety disorders in 100 headache patients by using the PSWQ (Penn State Worry Questionnaire) screening tool for generalised anxiety disorder (GAD) and the ACQ (Agoraphobic Cognitions Questionnaire) and BSQ (Body Sensation Questionnaire) for panic disorder (PD). Control groups were constructed: (1) on the basis of epidemiological studies on PD and GAD in the general population and (2) by including neurological patients. 37.0% of headache patients had a GAD. 27% of headache patients met the score for PD in the BSQ, 4.0% in the ACQ. Significant results were obtained in comparison to the general population (p < 0.001) and with regard to GAD in comparison with a sample of neurological patients (p < 0.005). The BSQ significantly correlated with the number of medication days (p < 0.005). The results confirm the increased prevalence of GAD in headache patients. PD seems to increase the risk of medication overuse

    The anisotropic transport effects on dilute plasmas

    No full text
    We examine the linear stability analysis of a hot, dilute, and differentially rotating plasma by considering anisotropic transport effects. In dilute plasmas, the ion Larmor radius is small compared with its collisional mean free path. In this case, the transport of heat and momentum along the magnetic field lines becomes important. This paper presents a novel linear instability that may be more powerful and greater than ideal magnetothermal instability and ideal magnetorotational instability in the dilute astrophysical plasmas. This type of plasma is believed to be found in the intracluster medium (ICM) of galaxy clusters and radiatively ineffective accretion flows around black holes. We derive the dispersion relation of this instability and obtain the instability condition. There is at least one unstable mode that is independent of the temperature gradient direction for a helical magnetic field geometry. This novel instability is driven by the gyroviscosity coupled with differential rotation. Therefore, we call it gyroviscous-modified magnetorotational instability (GvMRI). We examine how the instability depends on signs of the temperature gradient and the gyroviscosity and also on the magnitude of the thermal frequency and on the values of the pitch angle. We provide a detailed physical interpretation of the obtained results. The GvMRI is applicable not only to the accretion flows and ICM but also to the transition region between cool dense gas and the hot low-density plasma in stellar coronae, accretion disks, and the multiphase interstellar medium because it is independent of the temperature gradient direction. Š 2011. The American Astronomical Society. All rights reserved

    Dynamics of the twisted magnetic flux tube in the astrophysical jets

    No full text
    7th Microquasar Workshop: Microquasars and Beyond, MQW 2008 -- 1 September 2008 through 5 September 2008 -- Foca, Izmir -- 101447We investigate the local linear stability analysis of rotating jets under the thick flux-tube approximation. The magnetic field is chosen so as to have toroidal and poloidal components contributing to the internal twist of the flux-tube. We obtained the dispersion relation for structures of the binormal helices. We also did numerical solutions of the dispersion relation. In the smaller m modes, the stabilizing effect of the rigid rotation is remarkable, since rotation velocities of the higher than the Alfven speed fully stabilize the flow in many cases. However, it is clearly seen that the higher m modes are generally more stable. Š Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence

    MHD waves in the solar north polar coronal hole

    No full text
    The effects, hitherto not treated, of the temperature and the number density gradients, both in the parallel and the perpendicular direction to the magnetic field, of O VI ions, on the MHD wave propagation characteristics in the solar North Polar Coronal Hole are investigated. We investigate the magnetosonic wave propagation in a resistive MHD regime where only the thermal conduction is taken into account. Heat conduction across the magnetic field is treated in a non-classical approach wherein the heat is assumed to be conducted by the plasma waves emitted by ions and absorbed at a distance from the source by other ions. Anisotropic temperature and the number density distributions of O VI ions revealed the chaotic nature of MHD standing wave, especially near the plume/interplume lane borders. Attenuation length scales of the fast mode is shown not to be smoothly varying function of the radial distance from the Sun. Š 2010 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim
    corecore