392 research outputs found

    Complex Hybrid Inflation and Baryogenesis

    Full text link
    We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U(1) global symmetry associated to the waterfall field charge. We show that the asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry. The latter strongly depends on the vev of the waterfall field, which is well constrained by diverse cosmological observations.Comment: 4 RevTex pages, no figures. Changes made in response to referee's comments; matches version published in Phys.Rev.Let

    Neutrino Spin Flavor Precession and Leptogenesis

    Full text link
    We argue that \Delta L=2 neutrino spin flavor precession, induced by the primordial magnetic fields, could have a significant impact on the leptogenesis process that accounts for the baryon asymmetry of the universe. Although the extra galactic magnetic fields is extremely weak at present time (about 10^{-9} Gauss), the primordial magnetic filed at the electroweak scale could be quite strong (of order 10^{17} Gauss). Therefore, at this scale, the effects of the spin flavor precession are not negligible. We show that the lepton asymmetry may be reduced by 50% due to the spin flavor precession. In addition, the leptogenesis will have different feature from the standard scenario of leptogenesis, where the lepton asymmetry continues to oscillate even after the electroweak phase transition.Comment: 5 pages, one figure. References adde

    Gravitino constraints on models of neutrino masses and leptogenesis

    Get PDF
    In the supersymmetric extensions of the standard model, neutrino masses and leptogenesis requires existence of new particles. We point out that if these particles with lepton number violating interactions have standard model gauge interactions, then they may not be created after reheating because of the gravitino problem. This will rule out all existing models of neutrino masses and leptogenesis, except the one with right-handed singlet neutrinos.Comment: 12 pages latex file with one postscript figur

    Supersymmetric contributions to Bˉsϕπ0\bar{B}_s \to \phi \pi^0 and Bˉsϕρ0\bar{B}_s \to \phi \rho^0 decays in SCET

    Full text link
    We study the decay modes Bˉsϕπ0\bar{B}_s\to \phi \pi^0 and Bˉsϕρ0\bar{B}_s\to \phi \rho^0 using Soft Collinear Effective Theory. Within Standard Model and including the error due to the SU(3) breaking effect in the SCET parameters we find that BR Bˉsϕπ0=712+1+2×108\bar{B}_s\to \phi \pi^0 =7_{-1-2}^{+1+2}\times 10^{-8} and BR Bˉsϕπ0=914+1+3×108\bar{B}_s\to \phi \pi^0=9_{-1-4}^{+1+3}\times 10^{-8} corresponding to solution 1 and solution 2 of the SCET parameters respectively.For the decay mode Bˉsϕρ0\bar{B}_s\to \phi \rho^0, we find that BR Bˉsϕρ0=20.2112+1+9×108\bar{B}_s\to \phi \rho^0 = 20.2^{+1+9}_{-1-12}\times 10^{-8} and BR Bˉsϕρ0=34.01.522+1.5+15×108 \bar{B}_s\to \phi \rho^0 = 34.0^{+1.5 + 15}_{-1.5-22}\times 10^{-8} corresponding to solution 1 and solution 2 of the SCET parameters respectively. We extend our study to include supersymmetric models with non-universal A-terms where the dominant contributions arise from diagrams mediated by gluino and chargino exchanges. We show that gluino contributions can not lead to an enhancement of the branching ratios of Bˉsϕπ0\bar{B}_s\to \phi \pi^0 and Bˉsϕρ0\bar{B}_s\to \phi \rho^0. In addition, we show that SUSY contributions mediated by chargino exchange can enhance the branching ratio of Bˉsϕπ0\bar{B}_s\to \phi \pi^0 by about 14% with respect to the SM prediction. For the branching ratio of Bˉsϕρ0\bar{B}_s\to \phi \rho^0, we find that SUSY contributions can enhance its value by about 1% with respect to the SM prediction.Comment: 25 pages,5 figures, version accepted for publicatio

    Effective Lagrangian description of the lepton flavor violating decays Z-->li lj

    Full text link
    A comprehensive analysis of the lepton flavor violating (LFV) decays Z-->li lj is presented within the effective Lagrangian approach. Both the decoupling and nondecoupling scenarios are explored. The experimental constraints from li --> lj lk \bar{lk} and li -->lj gamma as well as some relationships arising from the gauge invariance of the effective Lagrangian are used to put constraints on Z-->li lj. It is found that while current experimental data impose very strong constraints on Z-->mu e, the channel Z --> tau mu (e)still may be at the reach of the planned TESLA collider.Comment: References added, final version to appear in Physical Review

    Properties of the massive Thirring model from the XYZ spin chain

    Get PDF
    We consider here the massive Thirring model regularized with the XYZ spin chain. We numerically calculate the mass ratios of particles which lie in the discrete part of the spectrum and obtain results in accordance with the DHN formula and in disagreement with recent calculations in the literature based on the numerical Bethe ansatz and infinite momentum frame methods. We also analyze the short distance behavior of these states and evaluate the conformal dimensions. This paper, taken together with the previous one for the sine-Gordon model, confirms the duality relation between two models formulated by Klassen and Melzer [Int. J. Mod. Phys. A 8, 4131 (1993)].Comment: 11 pages, 6 figures, to be published in Phys. Rev. D 6

    Light Stop Decay in the MSSM with Minimal Flavour Violation

    Full text link
    In supersymmetric scenarios with a light stop particle t~1\tilde{t}_1 and a small mass difference to the lightest supersymmetric particle (LSP) assumed to be the lightest neutralino, the flavour changing neutral current decay t~1cχ~10\tilde{t}_1 \to c \tilde{\chi}_1^0 can be the dominant decay channel and can exceed the four-body stop decay for certain parameter values. In the framework of Minimal Flavour Violation (MFV) this decay is CKM-suppressed, thus inducing long stop lifetimes. Stop decay length measurements at the LHC can then be exploited to test models with minimal flavour breaking through Standard Model Yukawa couplings. The decay width has been given some time ago by an approximate formula, which takes into account the leading logarithms of the MFV scale. In this paper we calculate the exact one-loop decay width in the framework of MFV. The comparison with the approximate result exhibits deviations of the order of 10% for large MFV scales due to the neglected non-logarithmic terms in the approximate decay formula. The difference in the branching ratios is negligible. The large logarithms have to be resummed. The resummation is performed by the solution of the renormalization group equations. The comparison of the exact one-loop result and the tree level flavour changing neutral current decay, which incorporates the resummed logarithms, demonstrates that the resummation effects are important and should be taken into account.Comment: 29 page

    Baryogenesis at Low Reheating Temperatures

    Full text link
    We note that the maximum temperature during reheating can be much greater than the reheating temperature TrT_r at which the Universe becomes radiation dominated. We show that the Standard Model anomalous (B+L)(B+L)-violating processes can therefore be in thermal equilibrium for 1 GeV \simlt T_{r}\ll 100 GeV. Electroweak baryogenesis could work and the traditional upper bound on the Higgs mass coming from the requirement of the preservation of the baryon asymmetry may be relaxed. Alternatively, the baryon asymmetry may be reprocessed by sphaleron transitions either from a (BL)(B-L) asymmetry generated by the Affleck-Dine mechanism or from a chiral asymmetry between eRe_R and eLe_L in a BL=0B-L = 0 Universe. Our findings are also relevant to the production of the baryon asymmetry in large extra dimension models.Comment: 4 pages, version to appear in PRL: references added, new titl

    Neutral top-pion and lepton flavor violating processes

    Full text link
    In the context of topcolor-assisted techicolor(TC2) models, we study the contributions of the neutral top-pion πt0\pi^{0}_{t} to the lepton flavor violating(LFV) processes liljγl_{i}\to l_{j}\gamma and liljlklll_{i}\to l_{j}l_{k}l_{l}. We find that the present experimental bound on μeγ\mu\to e\gamma gives severe constraints on the free parameters of TC2TC2 models. Taking into account these constraints, we consider the processes liljlklll_{i}\to l_{j}l_{k}l_{l} generated by top-pion exchange at the tree-level and the one loop level, and obtain Br(μ3e)2.87×1014Br(\mu\to 3e)\simeq 2.87\times 10^{-14}, 1.1×1015Br(τ3e)Br(τ2eμ)4.4×10151.1\times 10^{-15}\leq Br(\tau\to 3e)\simeq Br(\tau\to 2e\mu)\leq 4.4 \times 10^{-15} , 3.1×1015Br(τ2μe)Br(τ3μ)1.5×10143.1\times 10^{-15} \leq Br(\tau\to 2\mu e)\simeq Br(\tau\to 3\mu)\leq 1.5 \times 10^{-14} in most of the parameter space.Comment: latex files,16 pages, 6 figures. Submitted to Phys. Rev.

    Top-squark searches at the Tevatron in models of low-energy supersymmetry breaking

    Get PDF
    We study the production and decays of top squarks (stops) at the Tevatron collider in models of low-energy supersymmetry breaking. We consider the case where the lightest Standard Model (SM) superpartner is a light neutralino that predominantly decays into a photon and a light gravitino. Considering the lighter stop to be the next-to-lightest Standard Model superpartner, we analyze stop signatures associated with jets, photons and missing energy, which lead to signals naturally larger than the associated SM backgrounds. We consider both 2-body and 3-body decays of the top squarks and show that the reach of the Tevatron can be significantly larger than that expected within either the standard supergravity models or models of low-energy supersymmetry breaking in which the stop is the lightest SM superpartner. For a modest projection of the final Tevatron luminosity, L = 4 fb-1, stop masses of order 300 GeV are accessible at the Tevatron collider in both 2-body and 3-body decay modes. We also consider the production and decay of ten degenerate squarks that are the supersymmetric partners of the five light quarks. In this case we find that common squark masses up to 360 GeV are easily accessible at the Tevatron collider, and that the reach increases further if the gluino is light.Comment: 32 pages, 9 figures; references adde
    corecore