51 research outputs found

    Exploring academic perspectives on immersive scheduling in a UK university

    Get PDF
    This study examined how academic staff responded to a cross-institutional change initiative to integrate immersive scheduling into the first-year undergraduate curriculum. Immersive scheduling, also referred to as block or compressed delivery, sought to create a supportive first-year experience, to ease students’ transition to university. Adopting an immersive approach is associated with considerable change as academic staff adapt their practice to accommodate the compressed time frame of modules and embrace learning and assessment methods associated with this delivery format. In this study, we undertook semi-structured interviews with 17 academics who were leading the development and delivery of immersive modules or supporting the teaching and learning initiative. Our data indicated that academics played a significant role in the acceptance or rejection of the vision for immersive scheduling. Acceptance was reliant on academics recognising value in the vision, and this varied depending on the extent to which it resonated with local practice. In some cases, the move to immersive scheduling represented a valued opportunity to update pedagogic and assessment practices. However, in other contexts, academic resistance led to dilution of key elements of the vision, with compliance rather than innovation being the outcome. This study also highlights the value of using a combination of module delivery formats to mitigate recognised drawbacks associated with immersive delivery. We conclude this paper by proposing recommendations to support the future development of immersive scheduling in higher education institutions

    Real-Time TEM Imaging of the Formation of Crystalline Nanoscale Gaps

    Get PDF
    We present real-time transmission electron microscopy of nanogap formation by feedback controlled electromigration that reveals a remarkable degree of crystalline order. Crystal facets appear during feedback controlled electromigration indicating a layer-by-layer, highly reproducible electromigration process avoiding thermal runaway and melting. These measurements provide insight into the electromigration induced failure mechanism in sub-20 nm size interconnects, indicating that the current density at failure increases as the width decreases to approximately 1 nm

    Electronic Devices Based on Purified Carbon Nanotubes Grown By High Pressure Decomposition of Carbon Monoxide

    Full text link
    The excellent properties of transistors, wires, and sensors made from single-walled carbon nanotubes (SWNTs) make them promising candidates for use in advanced nanoelectronic systems. Gas-phase growth procedures such as the high pressure decomposition of carbon monoxide (HiPCO) method yield large quantities of small diameter semiconducting SWNTs, which are ideal for use in nanoelectronic circuits. As-grown HiPCO material, however, commonly contains a large fraction of carbonaceous impurities that degrade properties of SWNT devices. Here we demonstrate a purification, deposition, and fabrication process that yields devices consisting of metallic and semiconducting nanotubes with electronic characteristics vastly superior to those of circuits made from raw HiPCO. Source-drain current measurements on the circuits as a function of temperature and backgate voltage are used to quantify the energy gap of semiconducting nanotubes in a field effect transistor geometry. This work demonstrates significant progress towards the goal of producing complex integrated circuits from bulk-grown SWNT material.Comment: 6 pages, 4 figures, to appear in Nature Material

    Crowdsourcing hypothesis tests: Making transparent how design choices shape research results

    Get PDF
    To what extent are research results influenced by subjective decisions that scientists make as they design studies? Fifteen research teams independently designed studies to answer fiveoriginal research questions related to moral judgments, negotiations, and implicit cognition. Participants from two separate large samples (total N > 15,000) were then randomly assigned to complete one version of each study. Effect sizes varied dramatically across different sets of materials designed to test the same hypothesis: materials from different teams renderedstatistically significant effects in opposite directions for four out of five hypotheses, with the narrowest range in estimates being d = -0.37 to +0.26. Meta-analysis and a Bayesian perspective on the results revealed overall support for two hypotheses, and a lack of support for three hypotheses. Overall, practically none of the variability in effect sizes was attributable to the skill of the research team in designing materials, while considerable variability was attributable to the hypothesis being tested. In a forecasting survey, predictions of other scientists were significantly correlated with study results, both across and within hypotheses. Crowdsourced testing of research hypotheses helps reveal the true consistency of empirical support for a scientific claim.</div

    Pratos e mais pratos: louças domésticas, divisões culturais e limites sociais no Rio de Janeiro, século XIX

    Get PDF
    Reply to ten comments on a paper published in the last issue of this journal. The discussion follows along six main lines: History museums, identity, ideology and the category of nation; the need of material collections and their modalities: patrimonial, operational, virtual; theater versus laboratory; visitors and their ambiguities; Public History: the museum and the academy.Resposta aos comentários de dez especialistas que contribuíram no debate de texto publicado no último número desta revista. A discussão orientou-se segundo seis tópicos principais: museus históricos, identidade, ideologia e a categoria de nação; a necessidade de acervos materiais e suas modalidades: acervo patrimonial, operacional, virtual; teatro versus laboratório; o público e suas ambigüidades; História Pública: o museu e a Academia

    Systems Engineering Methodology for Verification of PV Module Parameter Solutions

    No full text
    Numerous sources provide methods to extract photovoltaic (PV) parameters from PV module datasheet values. The inputs are the number of series cells Ns\text{N}_{\mathrm {s}} , open circuit voltage Voc\text{V}_{\mathrm {oc}} , maximum power voltage Vmp\text{V}_{\mathrm {mp}} , maximum power current Imp\text{I}_{\mathrm {mp}} , and short circuit current Isc\text{I}_{\mathrm {sc}} . The 5 Parameter Model solutions outputs are diode ideality factor η\eta , series resistance Rs\text{R}_{\mathrm {s}} , parallel resistance Rp\text{R}_{\mathrm {p}} , photon light current IL\text{I}_{\mathrm {L}} , and diode reverse saturation current Io\text{I}_{\mathrm {o}} . The parameter solution requires solving three simultaneous transcendental equations for η\eta , Rs\text{R}_{\mathrm {s}} , and Rp\text{R}_{\mathrm {p}} and additional calculations for IL\text{I}_{\mathrm {L}} and Io\text{I}_{\mathrm {o}} . One of the primary tenants of Systems Engineering, verification, was applied to parameter solution results to check for physical and model fitness. This manuscript provides novel methods to verify parameter results and applies them to available solutions
    corecore