125 research outputs found

    Norovirus genotypes in endemic acute gastroenteritis of infants and children in Finland between 1994 and 2007

    Get PDF
    Noroviruses are, after rotaviruses, the second most common causative agents of acute gastroenteritis in young children. We studied norovirus genotypes in faecal specimens collected from Finnish children followed-up prospectively in rotavirus vaccine trials. Almost 5000 faecal specimens collected from cases of acute gastroenteritis were examined using reverse transcriptase–PCR. A total of 1172 cases (25% of all acute gastroenteritis) were associated with noroviruses. Of these, 96% were genogroup GII. GII.4 was the most common genotype (46%) throughout the study period but the proportion of this genotype varied in different norovirus epidemic seasons. Additional norovirus genotypes detected were: GII.7 (15%), GII.3 (14%), GII.1 (9%), GII.b (7%), GII.2 (3%), and GI.3 (2%). GII.4 dominated during the following years: 1998–1999 (75%), 2002–2003 (88%) and 2006–2007 (98%) while recombinant genotype GII.b was dominant between 2003 and 2004 (83%). In conclusion, genotypes GII.4 and GIIb have emerged as predominant norovirus genotypes in endemic gastroenteritis affecting young infants and children in Finland

    DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity

    No full text
    Abstract DNA replication is sensitive to damage in the template. To bypass lesions and complete replication, cells activate recombination-mediated (error-free) and translesion synthesis-mediated (error-prone) DNA damage tolerance pathways. Crucial for error-free DNA damage tolerance is template switching, which depends on the formation and resolution of damage-bypass intermediates consisting of sister chromatid junctions. Here we show that a chromatin architectural pathway involving the high mobility group box protein Hmo1 channels replication-associated lesions into the error-free DNA damage tolerance pathway mediated by Rad5 and PCNA polyubiquitylation, while preventing mutagenic bypass and toxic recombination. In the process of template switching, Hmo1 also promotes sister chromatid junction formation predominantly during replication. Its C-terminal tail, implicated in chromatin bending, facilitates the formation of catenations/hemicatenations and mediates the roles of Hmo1 in DNA damage tolerance pathway choice and sister chromatid junction formation. Together, the results suggest that replication-associated topological changes involving the molecular DNA bender, Hmo1, set the stage for dedicated repair reactions that limit errors during replication and impact on genome stability

    Scrapie-Specific Pathology of Sheep Lymphoid Tissues

    Get PDF
    Transmissible spongiform encephalopathies (TSEs) or prion diseases often result in accumulation of disease-associated PrP (PrPd) in the lymphoreticular system (LRS), specifically in association with follicular dendritic cells (FDCs) and tingible body macrophages (TBMs) of secondary follicles. We studied the effects of sheep scrapie on lymphoid tissue in tonsils and lymph nodes by light and electron microscopy. FDCs of sheep were grouped according to morphology as immature, mature or regressing. Scrapie was associated with FDC dendrite hypertrophy and electron dense deposit or vesicles. PrPd was located using immunogold labelling at the plasmalemma of FDC dendrites and, infrequently, mature B cells. Abnormal electron dense deposits surrounding FDC dendrites were identified as immunoglobulins suggesting that excess immune complexes are retained and are indicative of an FDC dysfunction. Within scrapie-affected lymph nodes, macrophages outside the follicle and a proportion of germinal centre TBMs accumulated PrPd within endosomes and lysosomes. In addition, TBMs showed PrPd in association with the cell membrane, non-coated pits and vesicles, and also with discrete, large and random endoplasmic reticulum networks, which co-localised with ubiquitin. These observations suggest that PrPd is internalised via the caveolin-mediated pathway, and causes an abnormal disease-related alteration in endoplasmic reticulum structure. In contrast to current dogma, this study shows that sheep scrapie is associated with cytopathology of germinal centres, which we attribute to abnormal antigen complex trapping by FDCs and abnormal endocytic events in TBMs. The nature of the sub-cellular changes in FDCs and TBMs differs from those of scrapie infected neurones and glial cells suggesting that different PrPd/cell membrane interactions occur in different cell types

    Foot-and-Mouth Disease Virus Persists in the Light Zone of Germinal Centres

    Get PDF
    Foot-and-mouth disease virus (FMDV) is one of the most contagious viruses of animals and is recognised as the most important constraint to international trade in animals and animal products. Two fundamental problems remain to be understood before more effective control measures can be put in place. These problems are the FMDV β€œcarrier state” and the short duration of immunity after vaccination which contrasts with prolonged immunity after natural infection. Here we show by laser capture microdissection in combination with quantitative real-time reverse transcription polymerase chain reaction, immunohistochemical analysis and corroborate by in situ hybridization that FMDV locates rapidly to, and is maintained in, the light zone of germinal centres following primary infection of naΓ―ve cattle. We propose that maintenance of non-replicating FMDV in these sites represents a source of persisting infectious virus and also contributes to the generation of long-lasting antibody responses against neutralising epitopes of the virus

    Molecular Dynamics and Quantum Mechanics of RNA: Conformational and Chemical Change We Can Believe In

    Get PDF
    Structure and dynamics are both critical to RNA’s vital functions in biology. Numerous techniques can elucidate the structural dynamics of RNA, but computational approaches based on experimental data arguably hold the promise of providing the most detail. In this Account, we highlight areas wherein molecular dynamics (MD) and quantum mechanical (QM) techniques are applied to RNA, particularly in relation to complementary experimental studies

    Replication and Recombination Factors Contributing to Recombination-Dependent Bypass of DNA Lesions by Template Switch

    Get PDF
    Damage tolerance mechanisms mediating damage-bypass and gap-filling are crucial for genome integrity. A major damage tolerance pathway involves recombination and is referred to as template switch. Template switch intermediates were visualized by 2D gel electrophoresis in the proximity of replication forks as X-shaped structures involving sister chromatid junctions. The homologous recombination factor Rad51 is required for the formation/stabilization of these intermediates, but its mode of action remains to be investigated. By using a combination of genetic and physical approaches, we show that the homologous recombination factors Rad55 and Rad57, but not Rad59, are required for the formation of template switch intermediates. The replication-proficient but recombination-defective rfa1-t11 mutant is normal in triggering a checkpoint response following DNA damage but is impaired in X-structure formation. The Exo1 nuclease also has stimulatory roles in this process. The checkpoint kinase, Rad53, is required for X-molecule formation and phosphorylates Rad55 robustly in response to DNA damage. Although Rad55 phosphorylation is thought to activate recombinational repair under conditions of genotoxic stress, we find that Rad55 phosphomutants do not affect the efficiency of X-molecule formation. We also examined the DNA polymerase implicated in the DNA synthesis step of template switch. Deficiencies in translesion synthesis polymerases do not affect X-molecule formation, whereas DNA polymerase Ξ΄, required also for bulk DNA synthesis, plays an important role. Our data indicate that a subset of homologous recombination factors, together with DNA polymerase Ξ΄, promote the formation of template switch intermediates that are then preferentially dissolved by the action of the Sgs1 helicase in association with the Top3 topoisomerase rather than resolved by Holliday Junction nucleases. Our results allow us to propose the choreography through which different players contribute to template switch in response to DNA damage and to distinguish this process from other recombination-mediated processes promoting DNA repair

    Identification of CD4+ T Cell Epitopes in C. burnetii Antigens Targeted by Antibody Responses

    Get PDF
    Coxiella burnetii is an obligate intracellular Gram-negative bacterium that causes acute Q fever and chronic infections in humans. A killed, whole cell vaccine is efficacious, but vaccination can result in severe local or systemic adverse reactions. Although T cell responses are considered pivotal for vaccine derived protective immunity, the epitope targets of CD4+ T cell responses in C. burnetii vaccination have not been elucidated. Since mapping CD4+ epitopes in a genome with over 2,000 ORFs is resource intensive, we focused on 7 antigens that were known to be targeted by antibody responses. 117 candidate peptides were selected from these antigens based on bioinformatics predictions of binding to the murine MHC class II molecule H-2 IAb. We screened these peptides for recognition by IFN-Ξ³ producing CD4+ T cell in phase I C. burnetii whole cell vaccine (PI-WCV) vaccinated C57BL/6 mice and identified 8 distinct epitopes from four different proteins. The identified epitope targets account for 8% of the total vaccination induced IFN-Ξ³ producing CD4+ T cells. Given that less than 0.4% of the antigens contained in C. burnetii were screened, this suggests that prioritizing antigens targeted by antibody responses is an efficient strategy to identify at least a subset of CD4+ targets in large pathogens. Finally, we examined the nature of linkage between CD4+ T cell and antibody responses in PI-WCV vaccinated mice. We found a surprisingly non-uniform pattern in the help provided by epitope specific CD4+ T cells for antibody production, which can be specific for the epitope source antigen as well as non-specific. This suggests that a complete map of CD4+ response targets in PI-WCV vaccinated mice will likely include antigens against which no antibody responses are made
    • …
    corecore