16 research outputs found

    Experimental realisation of quantum illumination

    Full text link
    We present the first experimental realisation of the quantum illumination protocol proposed in Ref.s [S. Lloyd, Science 321, 1463 (2008); S. Tan et al., Phys. Rev. Lett. 101, 253601 (2008)], achieved in a simple feasible experimental scheme based on photon-number correlations. A main achievement of our result is the demonstration of a strong robustness of the quantum protocol to noise and losses, that challenges some widespread wisdom about quantum technologies.Comment: PRL in pres

    Systematic analysis of SNR in bipartite Ghost Imaging with classical and quantum light

    Full text link
    We present a complete and exhaustive theory of signal-to-noise-ratio in bipartite ghost imaging with classical (thermal) and quantum (twin beams) light. The theory is compared with experiment for both twin beams and thermal light in a certain regime of interest

    Advances in photonic quantum sensing

    Get PDF
    Quantum sensing has become a mature and broad field. It is generally related with the idea of using quantum resources to boost the performance of a number of practical tasks, including the radar-like detection of faint objects, the readout of information from optical memories or fragile physical systems, and the optical resolution of extremely close point-like sources. Here we first focus on the basic tools behind quantum sensing, discussing the most recent and general formulations for the problems of quantum parameter estimation and hypothesis testing. With this basic background in our hands, we then review emerging applications of quantum sensing in the photonic regime both from a theoretical and experimental point of view. Besides the state-of-the-art, we also discuss open problems and potential next steps.Comment: Review in press on Nature Photonics. This is a preliminary version to be updated after publication. Both manuscript and reference list will be expande
    corecore