7,284 research outputs found

    Quark mass and condensate in HQCD

    Full text link
    We extend the Sakai-Sugimoto holographic model of QCD (HQCD) by including the scalar bi-fundamental "tachyon" field in the 8-brane-anti-8-brane probe theory. We show that this field is responsible both for the spontaneous breaking of the chiral symmetry, and for the generation of (current algebra) quark masses, from the point of view of the bulk theory. As a by-product we show how this leads to the Gell-Mann- Oakes-Renner relation for the pion mass.Comment: 23 pages, 7 figures; v2: corrected typos in eqs. (4.3), (4.4), (4.5), (4.9) and (4.11), and corrected figures 3, 4, 5 and 6; v3: section 5.3 on the pion mass rewritten in a clearer way, version published in JHE

    Possible Observational Criteria for Distinguishing Brown Dwarfs from Planets

    Get PDF
    The difference in formation process between binary stars and planetary systems is reflected in their composition as well as their orbital architecture, particularly orbital eccentricity as a function of orbital period. It is suggested here that this difference can be used as an observational criterion to distinguish between brown dwarfs and planets. Application of the orbital criterion suggests that with three possible exceptions, all of the recently-discovered substellar companions discovered to date may be brown dwarfs and not planets. These criterion may be used as a guide for interpretation of the nature of sub-stellar mass companions to stars in the future.Comment: LaTeX, 11 pages including 2 figures, accepted for publication in the Astrophysical Journal Letter

    High volumetric capacitance near insulator-metal percolation transition

    Full text link
    A new type of a capacitor with a very high volumetric capacitance is proposed. It is based upon the known phenomenon of a sharp increase of the dielectric constant of the metal-insulator composite in the vicinity of the percolation threshold, but still on the insulator side. The optimization suggests that the metallic particles should be of nanoscale and that the distance between planar electrodes should be somewhat larger than the correlation length of the percolation theory and 10 to 20 times larger than the size of the particles while the area of the electrodes might be unlimited. The random electric field in the capacitors is found to be larger than the average field corresponding to the potential difference of electrodes. This random field is potentially responsible for dielectric breakdown. The estimated breakdown voltage of the new capacitor shows that the stored energy density might be significantly larger than that of electrolytic capacitors while the volumetric capacitances might be comparable. The charging and discharging times should be significantly smaller than corresponding times of batteries and even electrolytic capacitors.Comment: 10 pages 1 EPS figur

    Perturbative Analysis of Nonabelian Aharonov-Bohm Scattering

    Full text link
    We perform a perturbative analysis of the nonabelian Aharonov-Bohm problem to one loop in a field theoretic framework, and show the necessity of contact interactions for renormalizability of perturbation theory. Moreover at critical values of the contact interaction strength the theory is finite and preserves classical conformal invariance.Comment: 12 pages in LaTeX, uses epsf.sty, 5 uuencoded Postscript figures sent separately. MIT-CTP-228

    The Splitting of Branes on Orientifold Planes

    Full text link
    Continuing the study in hep-th/0004092 and hep-th/0004092, we investigate a non-trivial string dynamical process related to orientifold planes, i.e., the splitting of physical NS-branes and D(p+2)-branes on orientifold Op-planes. Creation or annihilation of physical Dp-branes usually accompanies the splitting process. In the particular case p=4, we use Seiberg-Witten curves as an independent method to check the results.Comment: 34 pages, 9 figure

    ELVIS - ELectromagnetic Vector Information Sensor

    Get PDF
    The ELVIS instrument was recently proposed by the authors for the Indian Chandrayaan-1 mission to the Moon and is presently under consideration by the Indian Space Research Organisation (ISRO). The scientific objective of ELVIS is to explore the electromagnetic environment of the moon. ELVIS samples the full three-dimensional (3D) electric field vector, E(x,t), up to 18 MHz, with selective Nyqvist frequency bandwidths down to 5 kHz, and one component of the magnetic field vector, B(x,t), from a few Hz up to 100 kHz.As a transient detector, ELVIS is capable of detecting pulses with a minimum pulse width of 5 ns. The instrument comprises three orthogonal electric dipole antennas, one magnetic search coil antenna and a four-channel digital sampling system, utilising flexible digital down conversion and filtering together with state-of-the-art onboard digital signal processing.Comment: 8 pages, 3 figures. Submitted to the DGLR Int. Symposium "To Moon and Beyond", Bremen, Germany, 2005. Companion paper to arXiv:astro-ph/050921
    • …
    corecore