1,037 research outputs found

    Asteroseismic stellar activity relations

    Full text link
    In asteroseismology an important diagnostic of the evolutionary status of a star is the small frequency separation which is sensitive to the gradient of the mean molecular weight in the stellar interior. It is thus interesting to discuss the classical age-activity relations in terms of this quantity. Moreover, as the photospheric magnetic field tends to suppress the amplitudes of acoustic oscillations, it is important to quantify the importance of this effect by considering various activity indicators. We propose a new class of age-activity relations that connects the Mt. Wilson SS index and the average scatter in the light curve with the small frequency separation and the amplitude of the p-mode oscillations. We used a Bayesian inference to compute the posterior probability of various empirical laws for a sample of 19 solar-like active stars observed by the Kepler telescope. We demonstrate the presence of a clear correlation between the Mt. Wilson SS index and the relative age of the stars as indicated by the small frequency separation, as well as an anti-correlation between the SS index and the oscillation amplitudes. We argue that the average activity level of the stars shows a stronger correlation with the small frequency separation than with the absolute age that is often considered in the literature. The phenomenological laws discovered in this paper have the potential to become new important diagnostics to link stellar evolution theory with the dynamics of global magnetic fields. In particular we argue that the relation between the Mt. Wilson SS index and the oscillation amplitudes is in good agreement with the findings of direct numerical simulations of magneto-convection.Comment: 5 pages, 4 figures, 2 tables. Accepted for publication in A&

    High-precision acoustic helium signatures in 18 low-mass low-luminosity red giants. Analysis from more than four years of Kepler observations

    Get PDF
    High-precision frequencies of acoustic modes in red giant stars are now available thanks to the long observing length and high-quality of the light curves provided by the NASA Kepler mission, thus allowing to probe the interior of evolved cool low-mass stars with unprecedented level of detail. We characterize the acoustic signature of the helium second ionization zone in a sample of 18 low-mass low-luminosity red giants by exploiting new mode frequency measurements derived from more than four years of Kepler observations. We analyze the second frequency differences of radial acoustic modes in all the stars of the sample by using the Bayesian code Diamonds. We find clear acoustic glitches due to the signature of helium second ionization in all the stars of the sample. We measure the acoustic depth and the characteristic width of the acoustic glitches with a precision level on average around ∼\sim2% and ∼\sim8%, respectively. We find good agreement with theoretical predictions and existing measurements from the literature. Lastly, we derive the amplitude of the glitch signal at νmax\nu_\mathrm{max} for the second differences and for the frequencies with an average precision of ∼\sim6%, obtaining values in the range 0.14-0.24 μ\muHz, and 0.08-0.33 μ\muHz, respectively, which can be used to investigate the helium abundance in the stars.Comment: 12 pages, 19 figures, 3 tables. Accepted for publication in A&

    Bayesian peak bagging analysis of 19 low-mass low-luminosity red giants observed with Kepler

    Get PDF
    The currently available Kepler light curves contain an outstanding amount of information but a detailed analysis of the individual oscillation modes in the observed power spectra, also known as peak bagging, is computationally demanding and challenging to perform on a large number of targets. Our intent is to perform for the first time a peak bagging analysis on a sample of 19 low-mass low-luminosity red giants observed by Kepler for more than four years. This allows us to provide high-quality asteroseismic measurements that can be exploited for an intensive testing of the physics used in stellar structure models, stellar evolution and pulsation codes, as well as for refining existing asteroseismic scaling relations in the red giant branch regime. For this purpose, powerful and sophisticated analysis tools are needed. We exploit the Bayesian code Diamonds, using an efficient nested sampling Monte Carlo algorithm, to perform both a fast fitting of the individual oscillation modes and a peak detection test based on the Bayesian evidence. We find good agreement for the parameters estimated in the background fitting phase with those given in the literature. We extract and characterize a total of 1618 oscillation modes, providing the largest set of detailed asteroseismic mode measurements ever published. We report on the evidence of a change in regime observed in the relation between linewidths and effective temperatures of the stars occurring at the bottom of the RGB. We show the presence of a linewidth depression or plateau around νmax\nu_\mathrm{max} for all the red giants of the sample. Lastly, we show a good agreement between our measurements of maximum mode amplitudes and existing maximum amplitudes from global analyses provided in the literature, useful as empirical tools to improve and simplify the future peak bagging analysis on a larger sample of evolved stars.Comment: 78 pages, 46 figures, 22 tables. Accepted for publication in A&

    Magnetic activity, differential rotation and dynamo action in the pulsating F9IV star KIC 5955122

    Full text link
    We present photometric spot modeling of the nearly four-year long light-curve of the Kepler target KIC 5955122 in terms of persisting dark circular surface features. With a Bayesian technique, we produced a plausible surface map that shows dozens of small spots. After some artifacts are removed, the residuals are at ±0.16\pm 0.16\,mmag. The shortest rotational period found is P=16.4±0.2P = 16.4 \pm 0.2 days. The equator-to-pole extrapolated differential rotation is 0.25±0.020.25 \pm 0.02 rad/d. The spots are roughly half as bright as the unperturbed stellar photosphere. Spot latitudes are restricted to the zone ±60∘\pm 60^\circ latitude. There is no indication for any near-pole spots. In addition, the p-mode pulsations enabled us to determine the evolutionary status of the star, the extension of the convective zone, and its radius and mass. We discuss the possibility that the clear signature of active regions in the light curve of the F9IV star KIC 5955122 is produced by a flux-transport dynamo action at the base of the convection zone. In particular, we argue that this star has evolved from an active to a quiet status during the Q0--Q16 period of observation, and we predict, according to our dynamo model, that the characteristic activity cycle is of the order of the solar one.Comment: 9 pages, 12 figures, to be published on A&

    The rotational shear layer inside the early red-giant star KIC 4448777

    Get PDF
    We present the asteroseismic study of the early red-giant star KIC 4448777, complementing and integrating a previous work (Di Mauro et al. 2016), aimed at characterizing the dynamics of its interior by analyzing the overall set of data collected by the {\it Kepler} satellite during the four years of its first nominal mission. We adopted the Bayesian inference code DIAMOND (Corsaro \& De Ridder 2014) for the peak bagging analysis and asteroseismic splitting inversion methods to derive the internal rotational profile of the star. The detection of new splittings of mixed modes, more concentrated in the very inner part of the helium core, allowed us to reconstruct the angular velocity profile deeper into the interior of the star and to disentangle the details better than in Paper I: the helium core rotates almost rigidly about 6 times faster than the convective envelope, while part of the hydrogen shell seems to rotate at a constant velocity about 1.15 times lower than the He core. In particular, we studied the internal shear layer between the fast-rotating radiative interior and the slow convective zone and we found that it lies partially inside the hydrogen shell above r≃0.05Rr \simeq 0.05R and extends across the core-envelope boundary. Finally, we theoretically explored the possibility for the future to sound the convective envelope in the red-giant stars and we concluded that the inversion of a set of splittings with only low-harmonic degree l≤3l\leq 3, even supposing a very large number of modes, will not allow to resolve the rotational profile of this region in detail.Comment: accepted for publication on Ap

    FliPer: Checking the reliability of global seismic parameters from automatic pipelines

    Get PDF
    Our understanding of stars through asteroseismic data analysis is limited by our ability to take advantage of the huge amount of observed stars provided by space missions such as CoRoT, Kepler, K2, and soon TESS and PLATO. Global seismic pipelines provide global stellar parameters such as mass and radius using the mean seismic parameters, as well as the effective temperature. These pipelines are commonly used automatically on thousands of stars observed by K2 for 3 months (and soon TESS for at least around 1 month). However, pipelines are not immune from misidentifying noise peaks and stellar oscillations. Therefore, new validation techniques are required to assess the quality of these results. We present a new metric called FliPer (Flicker in Power), which takes into account the average variability at all measured time scales. The proper calibration of FliPer enables us to obtain good estimations of global stellar parameters such as surface gravity that are robust against the influence of noise peaks and hence are an excellent way to find faults in asteroseismic pipelines.Comment: 4 pages, 3 figures, Proceedings for SF2A 2017 (Paris

    Fast and Automated Peak Bagging with DIAMONDS (FAMED)

    Get PDF
    Stars of low and intermediate mass that exhibit oscillations may show tens of detectable oscillation modes each. Oscillation modes are a powerful to constrain the internal structure and rotational dynamics of the star, hence tool allowing one to obtain an accurate stellar age. The tens of thousands of solar-like oscillators that have been discovered thus far are representative of the large diversity of fundamental stellar properties and evolutionary stages available. Because of the wide range of oscillation features that can be recognized in such stars, it is particularly challenging to properly characterize the oscillation modes in detail, especially in light of large stellar samples. Overcoming this issue requires an automated approach, which has to be fast, reliable, and flexible at the same time. In addition, this approach should not only be capable of extracting the oscillation mode properties of frequency, linewidth, and amplitude from stars in different evolutionary stages, but also able to assign a correct mode identification for each of the modes extracted. Here we present the new freely available pipeline FAMED (Fast and AutoMated pEak bagging with DIAMONDS), which is capable of performing an automated and detailed asteroseismic analysis in stars ranging from the main sequence up to the core-Helium-burning phase of stellar evolution. This, therefore, includes subgiant stars, stars evolving along the red giant branch (RGB), and stars likely evolving toward the early asymptotic giant branch. In this paper, we additionally show how FAMED can detect rotation from dipolar oscillation modes in main sequence, subgiant, low-luminosity RGB, and core-Helium-burning stars. FAMED can be downloaded from its public GitHub repository (https://github.com/EnricoCorsaro/FAMED).Comment: 46 pages, 19 figures, 4 tables. Accepted for publication in A&

    The relevance of sperm morphology in male infertility

    Get PDF
    This brief report concerns the role of human sperm morphology assessment in different fields of male infertility: basic research, genetics, assisted reproduction technologies, oxidative stress. One of the best methods in studying sperm morphology is transmission electron microscopy (TEM) that enables defining the concept of sperm pathology and classifying alterations in non-systematic and systematic. Non-systematic sperm defects affect head and tail in variable ratio, whereas the rare systematic defects are characterized by a particular anomaly that marks most sperm of an ejaculate. TEM analysis and fluorescence in situ hybridization represent outstanding methods in the study of sperm morphology and cytogenetic in patients with altered karyotype characterizing their semen quality before intracytoplasmic sperm injection. In recent years, the genetic investigations on systematic sperm defects, made extraordinary progress identifying candidate genes whose mutations induce morphological sperm anomalies. The question if sperm morphology has an impact on assisted fertilization outcome is debated. Nowadays, oxidative stress represents one of the most important causes of altered sperm morphology and function and can be analyzed from two points of view: 1) spermatozoa with cytoplasmic residue produce reactive oxygen species, 2) the pathologies with inflammatory/oxidative stress background cause morphological alterations. Finally, sperm morphology is also considered an important endpoint in in vitro experiments where toxic substances, drugs, antioxidants are tested. We think that the field of sperm morphology is far from being exhausted and needs other research. This parameter can be still considered a valuable indicator of sperm dysfunction both in basic and clinical research

    Human sperm as an in vitro model to assess the efficacy of antioxidant supplements during sperm handling: a narrative review

    Get PDF
    Spermatozoa are highly differentiated cells that produce reactive oxygen species (ROS) due to aerobic metabolism. Below a certain threshold, ROS are important in signal transduction pathways and cellular physiological processes, whereas ROS overproduction damages spermatozoa. Sperm manipulation and preparation protocols during assisted reproductive procedures-for example, cryopreservation-can result in excessive ROS production, exposing these cells to oxidative damage. Thus, antioxidants are a relevant topic in sperm quality. This narrative review focuses on human spermatozoa as an in vitro model to study which antioxidants can be used to supplement media. The review comprises a brief presentation of the human sperm structure, a general overview of the main items of reduction-oxidation homeostasis and the ambivalent relationship between spermatozoa and ROS. The main body of the paper deals with studies in which human sperm have been used as an in vitro model to test antioxidant compounds, including natural extracts. The presence and the synergic effects of different antioxidant molecules could potentially lead to more effective products in vitro and, in the future, in vivo
    • …
    corecore