127 research outputs found

    Ultrafast charge carrier dynamics in quantum confined 2D perovskite

    Get PDF
    We studied the charge carrier dynamics in 2D perovskite NBT2PbI4 by ultrafast optical pump-THz probe spectroscopy. We observed a few ps long relaxation dynamics that can be ascribed to the band to band carrier recombination, in the absence of any contribution from many-body and trap assisted processes. The transient conductivity spectra show that the polaron dynamics is strongly modulated by the presence of a rich exciton population. The polarization field resulting from the exciton formation acts as the source of a restoring force that localizes polarons. This is revealed by the presence of a negative imaginary conductivity. Our results show that the dynamics of excitons in 2D perovskites at room temperature can be detected by monitoring their effect on the conductivity of the photoinduced polaronic carrier

    Microencapsulation of Phenolic Extracts from Cocoa Shells to Enrich Chocolate Bars

    Get PDF
    Cocoa bean shells were subjected to green extraction technologies, based on the absence of toxic organic solvents, to recover polyphenols; the extract was then encapsulated using a spray dryer and maltodextrin as coating agent. The best conditions observed in the spray drying tests (core-to-coating ratio 1:5; inlet temperature 150 °C; flow rate 6 ml min-1) were applied to produce the microcapsules used to enrich the same cocoa mass as the shells and processed for the preparation of the chocolate bars. Sensory analysis showed no significant differences between enriched chocolate bar and the unenriched reference one, except for the appearance. Both samples were then subjected to accelerated storage tests, at the end of which the polyphenols in the control chocolate bar (0.85 g 100 g-1) were reduced by about 50% (0.42 g 100 g-1), while in the enriched chocolate (1.17 g 100 g-1) by only 22% (0.97 g 100 g-1). The proposed process significantly enriched the chocolate bars with phenolic antioxidants recovered from cocoa waste without increasing the sensations of bitterness and astringency

    Novel near-infrared emission from crystal defects in MoS2 multilayer flakes

    Get PDF
    The structural defects in two-dimensional transition metal dichalcogenides, including point defects, dislocations and grain boundaries, are scarcely considered regarding their potential to manipulate the electrical and optical properties of this class of materials, notwithstanding the significant advances already made. Indeed, impurities and vacancies may influence the exciton population, create disorder-induced localization, as well as modify the electrical behaviour of the material. Here we report on the experimental evidence, confirmed by ab initio calculations, that sulfur vacancies give rise to a novel near-infrared emission peak around 0.75 eV in exfoliated MoS2 flakes. In addition, we demonstrate an excess of sulfur vacancies at the flake's edges by means of cathodoluminescence mapping, aberration-corrected transmission electron microscopy imaging and electron energy loss analyses. Moreover, we show that ripplocations, extended line defects peculiar to this material, broaden and redshift the MoS2 indirect bandgap emission

    Carbon sp chains in graphene nanoholes

    Full text link
    Nowadays sp carbon chains terminated by graphene or graphitic-like carbon are synthesized routinely in several nanotech labs. We propose an ab-initio study of such carbon-only materials, by computing their structure and stability, as well as their electronic, vibrational and magnetic properties. We adopt a fair compromise of microscopic realism with a certain level of idealization in the model configurations, and predict a number of properties susceptible to comparison with experiment.Comment: 34 pages, 27 figure

    Ultrafast carrier dynamics of epitaxial silicene

    Get PDF
    The recent integration of silicene in field-effect transistors (FET) opened new challenges in the comprehension of the chemical and physical properties of this elusive two-dimensional allotropic form of silicon. Intense efforts have been devoted to the study of the epitaxial Silicene/Ag(111) system in order to elucidate the presence of Dirac fermion in analogy with graphene; strong hybridization effects in silicene superstructures on silver have been invoked as responsible for the disruption of \u3c0 and \u3c0* bands. In this framework, the measured ambipolar effect in silicene-based FET characterized by a relatively high mobility, points out to a complex physics at the silicene-silver interface, demanding for a deeper comprehension of its details on the atomic scale. Here we elucidate the role of the metallic support in determining the physical properties of the Si/Ag interface, by means of optical techniques combined with theoretical calculations of the optical response of the supported system. The silicene/Ag(111) spectra, which turn out to be strongly non-additive, are analyzed in the framework of theoretical density functional based calculations allowing us to single out contributions arising from different localization. Electronic transitions involving silver states are found to provide a huge contribution to the optical absorption of silicene on silver, compatible with a strong Si-Ag hybridization. The results point to a dimensionality-driven peculiar dielectric response of the two-dimensional-silicon/silver interface, which is confirmed by means of Transient-Reflectance spectroscopy. The latter shows a metallic-like carrier dynamics, (both for silicene and amorphous silicon), hence providing an optical demonstration of the strong hybridization arising in silicene/Ag(111) systems

    Classification and nomenclature of all human homeobox genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described.</p> <p>Results</p> <p>We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes. We describe 300 human homeobox loci, which we divide into 235 probable functional genes and 65 probable pseudogenes. These totals include 3 genes with partial homeoboxes and 13 pseudogenes that lack homeoboxes but are clearly derived from homeobox genes. These figures exclude the repetitive <it>DUX1 </it>to <it>DUX5 </it>homeobox sequences of which we identified 35 probable pseudogenes, with many more expected in heterochromatic regions. Nomenclature is established for approximately 40 formerly unnamed loci, reflecting their evolutionary relationships to other loci in human and other species, and nomenclature revisions are proposed for around 30 other loci. We use a classification that recognizes 11 homeobox gene 'classes' subdivided into 102 homeobox gene 'families'.</p> <p>Conclusion</p> <p>We have conducted a comprehensive survey of homeobox genes and pseudogenes in the human genome, described many new loci, and revised the classification and nomenclature of homeobox genes. The classification scheme may be widely applicable to homeobox genes in other animal genomes and will facilitate comparative genomics of this important gene superclass.</p
    corecore