18,399 research outputs found

    Apollo spacecraft systems analysis program. A comparison of the computed LR received signal spectrum and the 1967 PEARL data

    Get PDF
    Similarities between experimentally measured power spectral density curves of landing radar signal returned from rough surface and computer simulated curves for sinusoidal surface

    Short-Term Dynamical Interactions Among Extrasolar Planets

    Full text link
    We show that short-term perturbations among massive planets in multiple planet systems can result in radial velocity variations of the central star which differ substantially from velocity variations derived assuming the planets are executing independent Keplerian motions. We discuss two alternate fitting methods which can lead to an improved dynamical description of multiple planet systems. In the first method, the osculating orbital elements are determined via a Levenberg-Marquardt minimization scheme driving an N-body integrator. The second method is an improved analytic model in which orbital elements are allowed to vary according to a simple model for resonant interactions between the planets. Both of these methods can determine the true masses for the planets by eliminating the sin(i) degeneracy inherent in fits that assume independent Keplerian motions. We apply our fitting methods to the GJ876 radial velocity data (Marcy et al. 2001), and argue that the mass factors for the two planets are likely in the 1.25-2.0 rangeComment: 13 pages, including 4 figures and 3 tables Accepted by Astrophyiscal Journal Letter

    Economic Growth and Threatened and Endangered Species Listings: A VAR Analysis

    Get PDF
    We conduct several analyses to examine the link between threatened and endangered species listings and macroeconomic activity. Preliminary tests using ordinary least squares are run on both time series data on the national level and cross sectional data at the state level. The analysis is then extended using vector autoregressive (VAR) techniques. VAR results, impulse response functions and variance decompositions are reported to shed more light on the causal relationships between threatened and endangered species, GDP and population. Our results indicate that there is little or no empirical evidence that GDP growth rates lead to changes in the number of threatened and endangered species listings.

    Economic Growth and Threatened and Endangered Species Listings: A VAR Analysis

    Get PDF
    We conduct several analyses to examine the link between threatened and endangered species listings and macroeconomic activity. Preliminary tests using ordinary least squares are run on both time series data on the national level and cross sectional data at the state level. The analysis is then extended using vector autoregressive (VAR) techniques. VAR results, impulse response functions and variance decompositions are reported to shed more light on the causal relationships between threatened and endangered species, GDP and population. Our results indicate that there is little or no empirical evidence that GDP growth rates lead to changes in the number of threatened and endangered species listings. Key Words: Economic growth, endangered and threatened species, vector autoregression

    Pseudo-High-Order Symplectic Integrators

    Get PDF
    Symplectic N-body integrators are widely used to study problems in celestial mechanics. The most popular algorithms are of 2nd and 4th order, requiring 2 and 6 substeps per timestep, respectively. The number of substeps increases rapidly with order in timestep, rendering higher-order methods impractical. However, symplectic integrators are often applied to systems in which perturbations between bodies are a small factor of the force due to a dominant central mass. In this case, it is possible to create optimized symplectic algorithms that require fewer substeps per timestep. This is achieved by only considering error terms of order epsilon, and neglecting those of order epsilon^2, epsilon^3 etc. Here we devise symplectic algorithms with 4 and 6 substeps per step which effectively behave as 4th and 6th-order integrators when epsilon is small. These algorithms are more efficient than the usual 2nd and 4th-order methods when applied to planetary systems.Comment: 14 pages, 5 figures. Accepted for publication in the Astronomical Journa

    Stochastic Dominance, Entropy and Biodiversity Management

    Get PDF
    In this paper we develop a model of population dynamics using the Shannon entropy index, a measure of diversity that allows for global and specific population shocks. We model the effects of increasing the number of parcels on biodiversity, varying the number of spatially diverse parcels to capture risk diversification. We discuss the concepts of stochastic dominance as a means of project selection, in order to model biodiversity returns and risks. Using a Monte Carlo simulation we find that stochastic dominance may be a useful theoretical construct for project selections but it is unable to rank every case.
    • …
    corecore