Symplectic N-body integrators are widely used to study problems in celestial
mechanics. The most popular algorithms are of 2nd and 4th order, requiring 2
and 6 substeps per timestep, respectively. The number of substeps increases
rapidly with order in timestep, rendering higher-order methods impractical.
However, symplectic integrators are often applied to systems in which
perturbations between bodies are a small factor of the force due to a dominant
central mass. In this case, it is possible to create optimized symplectic
algorithms that require fewer substeps per timestep. This is achieved by only
considering error terms of order epsilon, and neglecting those of order
epsilon^2, epsilon^3 etc. Here we devise symplectic algorithms with 4 and 6
substeps per step which effectively behave as 4th and 6th-order integrators
when epsilon is small. These algorithms are more efficient than the usual 2nd
and 4th-order methods when applied to planetary systems.Comment: 14 pages, 5 figures. Accepted for publication in the Astronomical
Journa