714 research outputs found

    Regulatory Role of Voltage-Gated Na+ Channel β Subunits in Sensory Neurons

    Get PDF
    Voltage-gated sodium Na+ channels are membrane-bound proteins incorporating aqueous conduction pores that are highly selective for sodium Na+ ions. The opening of these channels results in the rapid influx of Na+ ions that depolarize the cell and drive the rapid upstroke of nerve and muscle action potentials. While the concept of a Na+-selective ion channel had been formulated in the 1940s, it was not until the 1980s that the biochemical properties of the 260-kDa and 36-kDa auxiliary β subunits (β1, β2) were first described. Subsequent cloning and heterologous expression studies revealed that the α subunit forms the core of the channel and is responsible for both voltage-dependent gating and ionic selectivity. To date, 10 isoforms of the Na+ channel α subunit have been identified that vary in their primary structures, tissue distribution, biophysical properties, and sensitivity to neurotoxins. Four β subunits (β1–β4) and two splice variants (β1A, β1B) have been identified that modulate the subcellular distribution, cell surface expression, and functional properties of the α subunits. The purpose of this review is to provide a broad overview of β subunit expression and function in peripheral sensory neurons and examine their contributions to neuropathic pain

    Microwave-propelled sails and their control

    Get PDF
    This paper presents the microwave-propelled sail, its structure, assumptions. We will present its equations of motion, then we will conduct stability analysis and we will design two controllers to make it asymptotically stable and marginally stable

    Beam Propagation Through Atmospheric Turbulence Using an Altitude-Dependent Structure Profile with Non-Uniformly Distributed Phase Screens

    Get PDF
    For free-space optical communication systems, numerical wave optics simulations provide a useful technique for modeling turbulence-induced beam degradation when the analytical theory is insufficient for characterizing the atmospheric channel. Motivated by such applications we use a split-step method modeling the turbulence as a series of random phase screens using the Hufnagel-Valley turbulence profile. We employ a space-to-ground case study to examine the irradiance and phase statistics for uniformly and non-uniformly located screens and find better agreement with theory using a non-uniform discretization minimizing the contribution of each screen to the total scintillation. In this poster, we summarize the method and the results of the case study including a comparison to layered models used in astronomical imaging applications

    Beam Propagation Through Atmospheric Turbulence Using an Altitude-Dependent Structure Profile with Non-Uniformly Distributed Phase Screens

    Get PDF
    Modeling the effects of atmospheric turbulence on optical beam propagation is a key element in the design and analysis of free-space optical communication systems. Numerical wave optics simulations provide a particularly useful technique for understanding the degradation of the optical field in the receiver plane when the analytical theory is insufficient for characterizing the atmospheric channel. Motivated by such an application, we use a split-step method modeling the turbulence along the propagation path as a series of thin random phase screens with modified von Karman refractive index statistics using the Hufnagel-Valley turbulence profile to determine the effective structure constant for each screen. In this work, we employ a space-to-ground case study to examine the irradiance and phase statistics for both uniformly and non-uniformly spaced screens along the propagation path and compare to analytical results. We find that better agreement with the analytical theory is obtained using a non-uniform spacing with the effective structure constant for each screen chosen to minimize its contribution to the scintillation in the receiver plane. We evaluate this method as a flexible alternative to other standard layered models used in astronomical imaging applications

    Measurements of few-mode fiber photonic lanterns in emulated atmospheric conditions for a low earth orbit space to ground optical communication receiver application

    Get PDF
    Photonic lanterns are being evaluated as a component of a scalable photon counting real-time optical ground receiver for space-to-ground photon-starved communication applications. The function of the lantern as a component of a receiver is to efficiently couple and deliver light from the atmospherically distorted focal spot formed behind a telescope to multiple small-core fiber-coupled single-element super-conducting nanowire detectors. This architecture solution is being compared to a multimode fiber coupled to a multi-element detector array. This paper presents a set of measurements that begins this comparison. This first set of measurements are a comparison of the throughput coupling loss at emulated atmospheric conditions for the case of a 60 cm diameter telescope receiving light from a low earth orbit satellite. The atmospheric conditions are numerically simulated at a range of turbulence levels using a beam propagation method and are physically emulated with a spatial light modulator. The results show that for the same number of output legs as the single-mode fiber lantern, the few-mode fiber lantern increases the power throughput up to 3.92 dB at the worst emulated atmospheric conditions tested of D/r(sub 0)=8.6. Furthermore, the coupling loss of the few-mode fiber lantern approaches the capability of a 30 micron graded index multimode fiber chosen for coupling to a 16 element detector array

    Capture and inception of bubbles near line vortices

    Full text link
    Motivated by the need to predict vortex cavitation inception, a study has been conducted to investigate bubble capture by a concentrated line vortex of core size rcrc and circulation Γ0Γ0 under noncavitating and cavitating conditions. Direct numerical simulations that solve simultaneously for the two phase flow field, as well as a simpler one-way coupled point-particle-tracking model (PTM) were used to investigate the capture process. The capture times were compared to experimental observations. It was found that the point-particle-tracking model can successfully predict the capture of noncavitating small nuclei by a line vortex released far from the vortex axis. The nucleus grows very slowly during capture until the late stages of the process, where bubble/vortex interaction and bubble deformation become important. Consequently, PTM can be used to study the capture of cavitating nuclei by dividing the process into the noncavitating capture of the nucleus, and then the growth of the nucleus in the low-pressure core region. Bubble growth and deformation act to speed up the capture process.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87832/2/022105_1.pd

    Effect of Dairy Beef Quality Assurance Training on Dairy Worker Knowledge and Welfare-Related Practices

    Get PDF
    A study was conducted to determine whether on-farm dairy beef quality assurance (BQA) training affected dairy worker knowledge of BQA and welfare-related practices. Dairy personnel who participated in the BQA training were administered an exam before and after the training to gauge the amount of knowledge gained. The average exam score was 21.0 points higher after the training, increasing from 54.4 to 75.4. Improvement in dairy worker knowledge suggests that BQA training programs have the potential to positively influence the dairy industry through the education of dairy owners and workers on BQA and welfare-related practices

    The Two-Phase Flow Separator Experiment Breadboard Model: Reduced Gravity Aircraft Results

    Get PDF
    Life support systems in space depend on the ability to effectively separate gas from liquid. Passive cyclonic phase separators use the centripetal acceleration of a rotating gas-liquid mixture to carry out phase separation. The gas migrates to the center, while gas-free liquid may be withdrawn from one of the end plates. We have designed, constructed and tested a breadboard that accommodates the test sections of two independent principal investigators and satisfies their respective requirements, including flow rates, pressure and video diagnostics. The breadboard was flown in the NASA low-gravity airplane in order to test the system performance and design under reduced gravity conditions

    Randomized placebo-controlled trial of amlodipine in vasospastic angina

    Get PDF
    AbstractObjectives. This study was designed to assess the efficacy and safety of amlodipine, a long-acting calcium channel blocker, in patients with vasospastic angina.Background. Previous studies have established the value of short-acting calcium channel blockers in the treatment of coronary spasm.Methods. Fifty-two patients with well documented vasospastic angina were entered into the present study. After a single-blind placebo run-in period, patients were randomized (in a double-blind protocol) to receive either amlodipine (10 mg) or placebo every morning for 4 weeks. Twenty-four patients received amlodipine and 28 received placebo. All patients were given diaries in which to record both the frequency, severity, duration and circumstances of anginal episodes and their intake of sublingual nitroglycerin tablets.Results. The rate of anginal episodes decreased significantly (p = 0.009) with amlodipine treatment compared with placebo and the intake of nitroglycerin tablets showed a similar trend. Peripheral edema was the only adverse event seen more frequently in amlodipine-treated patients. No patient was withdrawn from the double-blind phase of the study because of an adverse event. Patients who completed the double-blind phase as responders to amlodipine or as nonresponders to placebo were offered the option of receiving amlodipine in a long-term, open label extension phase. During the extension, the daily dose of amlodipine was adjusted to 5 or 15 mg if needed and the rate of both anginal episodes and nitroglycerin tablet consumption showed statistically significant decreases between baseline and final assessment.Conclusion. This study suggests that amlodipine given once daily is efficacious and safe in the treatment of vasospastic angina
    corecore