1,590 research outputs found

    On the impact of Helium abundance on the Cepheid Period-Luminosity and Wesenheit relations and the Distance Ladder

    Get PDF
    This work analyses the effect of the Helium content on synthetic Period-Luminosity Relations (PLRs) and Period-Wesenheit Relations (PWRs) of Cepheids and the systematic uncertainties on the derived distances that a hidden population of He-enhanced Cepheids may generate. We use new stellar and pulsation models to build a homogeneous and consistent framework to derive the Cepheid features. The Cepheid populations expected in synthetic color-magnitude diagrams of young stellar systems (from 20 Myr to 250 Myr) are computed in several photometric bands for Y = 0.25 and Y = 0.35, at a fixed metallicity (Z = 0.008). The PLRs appear to be very similar in the two cases, with negligible effects (few %) on distances, while PWRs differ somewhat, with systematic uncertainties in deriving distances as high as about 7% at log P < 1.5. Statistical effects due to the number of variables used to determine the relations contribute to a distance systematic error of the order of few percent, with values decreasing from optical to near-infrared bands. The empirical PWRs derived from multi-wavelength datasets for the Large Magellanic Cloud (LMC) is in a very good agreement with our theoretical PWRs obtained with a standard He content, supporting the evidence that LMC Cepheids do not show any He effect

    Multipopulation aftereffects on the color-magnitude diagram and Cepheid variables of young stellar systems

    Full text link
    Context: The evidence of a multipopulation scenario in Galactic globular clusters raises several questions about the formation and evolution of the two (or more) generations of stars. These populations show differences in their age and chemical composition. These differences are found in old- and intermediate- age stellar clusters in the Local Group. The observations of young stellar systems are expected to present footprints of multiple stellar populations. Aims: This theoretical work intends to be a specific step in exploring the space of the observational indicators of multipopulations, without covering all the combinations of parameters that may contribute to the formation of multiple generations of stars in a cluster or in galaxy. The goal is to shed light on the possible observational features expected by core He-burning stars that belong to two stellar populations with different original He content and ages. Methods: The tool adopted was the stellar population synthesis. We used new stellar and pulsation models to construct a homogeneous and consistent framework. Synthetic color-magnitude diagrams (CMDs) of young- and intermediate-age stellar systems (from 20 Myr up to 1 Gyr) were computed in several photometric bands to derive possible indicators of double populations both in the observed CMDs and in the pulsation properties of the Cepheids. Results: We predict that the morphology of the red/blue clump in VIK bands can be used to photometrically indicate the two stellar populations in a rich assembly of stars if there is a significant difference in their original He content. Moreover, the period distribution of the Cepheids appears to be widely affected by the coeval multiple generations of stars within stellar systems. We show that the Wesenheit relations may be affected by the helium content of the Cepheids.Comment: in press on A&

    Photometric and spectroscopic study of the intermediate-age open cluster NGC 2355

    Get PDF
    In this paper we analyse the evolutionary status and properties of the old open cluster NGC 2355, located in the Galactic anticentre direction, as a part of the long term programme BOCCE. NGC 2355 was observed with LBC@LBT using the Bessel BB, VV, and IcI_c filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, as done in other papers of this series. Additional spectroscopic observations with FIES@NOT of three giant stars were used to determine the chemical properties of the cluster. Our analysis shows that NGC 2355 has metallicity slightly less than solar, with [Fe/H]=0.06=-0.06 dex, age between 0.8 and 1 Gyr, reddening E(BV)E(B-V) in the range 0.14 and 0.19 mag, and distance modulus (mM)0(m-M)_0 of about 11 mag. We also investigated the abundances of O, Na, Al, α\alpha, iron-peak, and neutron capture elements, showing that NGC 2355 falls within the abundance distribution of similar clusters (same age and metallicity). The Galactocentric distance of NGC~2355 places it at the border between two regimes of metallicity distribution; this makes it an important cluster for the study of the chemical properties and evolution of the disc.Comment: 20 pages, 11 figures, Accepted on MNRA

    The He abundance in NGC 1850 A and B: are we observing the early stage of formation of multiple populations in a stellar cluster?

    Full text link
    We present the result of a sample of B-stars in the Large Magellanic Cloud young double stellar cluster NGC 1850 A and NGC 1850 B, observed with the integral-field spectrograph at the Very Large Telescope, the Multi Unit Spectroscopic Explorer. We compare the observed equivalent widths (EWs) of four He lines (4922 A˚\mathring{\mathrm A}, 5015 A˚\mathring{\mathrm A}, 6678 A˚\mathring{\mathrm A}, and 7065 A˚\mathring{\mathrm A}) with the ones determined from synthetic spectra computed with different He mass fraction (Y=0.25, 0.27, 0.30 and 0.35) with the code SYNSPEC, that takes into account the non-LTE effect. From this comparison, we determined the He mass fraction of the B stars, finding a not homogeneous distribution. The stars can be divided in three groups, He-weak (Y <\lt 0.24) and the He-normal (0.24 \leqslant Y \leqslant 0.26) belonging to the MS of NGC 1850 A, and the He-rich stars (0.33 \leqslant Y \leqslant 0.38) situated in the MS associated to NGC 1850 B. We have analyzed the stellar rotation as possible responsible of the anomalous features of the He lines in the He-rich stars. We provide a simple analysis of the differences between the observed EWs and the ones obtained from the theoretical models with different rotation velocity (Vsini\sin{i} = 0 and 250 Km/s). The resolution of the MUSE spectra do not allow to get a conclusive result, however our analysis support the He-enhanced hypothesis.Comment: Accepted for publication by MNRAS, 10 pages, 8 figure
    corecore