885 research outputs found

    The puzzle of metallicity and multiple stellar populations in the Globular Clusters in Fornax

    Full text link
    We examine the photometric data for Fornax clusters, focussing our attention on their horizontal branch color distribution and, when available, on the RR Lyr variables fraction and period distribution. Based on our understanding of the HB morphology in terms of varying helium content in the context of multiple stellar generations, we show that clusters F2, F3 and F5 must contain substantial fractions of second generation stars (~54-65%). On the basis of a simple chemical evolution model we show that the helium distribution in these clusters can be reproduced by models with cluster initial masses ranging from values equal to ~4 to ~10 times larger than the current masses. Models with a very short second generation star formation episode can also reproduce the observed helium distribution but require larger initial masses up to about twenty times the current mass. While the lower limit of this range of possible initial GC masses is consistent with those suggested by the observations of the low metallicity field stars, we also discuss the possibility that the metallicity scale of field stars (based on CaII triplet spectroscopy) and the metallicities derived for the clusters in Fornax may not be consistent with each other. The reproduction of the HB morphology in F2,F3,F5 requires two interesting hypotheses: 1) the first generation HB stars lie all at "red" colours. According to this interpretation, the low metallicity stars in the field of Fornax, populating the HB at colours bluer than the blue side ((V-I)o<=0.3 or (B-V)o<=0.2) of the RR Lyrs, should be second generation stars born in the clusters;a preliminary analysis of available colour surveys of Fornax field provides a fraction ~20% of blue HB stars, in the low metallicity range; 2) the mass loss from individual second generation red giants is a few percent of a solar mass larger than the mass loss from first generation stars.Comment: 14 pages, 8 figures. Accepted for publication in MNRA

    Kinematic segregation of nearby disk stars from the Hipparcos database

    Full text link
    To better understand our Galaxy, we investigate the pertinency of describing the sys tem of nearby disk stars in terms of a two-components Schwarzschild velocity distributio n.Using the proper motion and parallax information of Hipparcos database, we determine t he parameters characterizing the local stellar velocity field of a sample of 22000 disk stars. The sample we use is essentially the same as the one described by the criteria ad opted to study the LSR and the stream motion of the nearby stellar populationComment: 19 page

    Infrared Photometry of Red Supergiants in Young Clusters in the Magellanic Clouds

    Get PDF
    We present broad-band infrared photometry for 52 late-type supergiants in the young Magellanic Clouds clusters NGC 330, NGC 1818, NGC 2004 and NGC 2100. Standard models are seen to differ in the temperature they predict for the red supergiant population on the order of 300K. It appears that these differences most probably due to the calibration of the mixing-length parameter, αP\alpha_{P}, in the outermost layers of the stellar envelope. Due to the apparent model dependent nature of αP\alpha_{P} we do not quantitatively compare αP\alpha_{P} between models. Qualitatively, we find that αP\alpha_{P} decreases with increased stellar mass within standard models. We do not find evidence for a metallicity dependence of αP\alpha_{P}.Comment: 11 pages, 4 figures. AJ accepte

    Young Clusters in the Magellanic Clouds II

    Get PDF
    We present the results of a quantitative study of the degree of extension to the boundary of the classical convective core within intermediate mass stars. The basis of our empirical study is the stellar population of four young populous clusters in the Magellanic Clouds which has been detailed in Keller, Bessell & Da Costa (2000). The sample affords a meaningful comparison with theoretical scenarios with varying degrees of convective core overshoot and binary star fraction. Two critical properties of the population, the main-sequence luminosity function and the number of evolved stars, form the basis of our comparison between the observed data set and that simulated from the stellar evolutionary models. On the basis of this comparison we conclude that the case of no convective core overshoot is excluded at a 2 sigma level.Comment: 27 pages, 12 figures, AJ accepte

    Single and Composite Hot Subdwarf Stars in the Light of 2MASS Photometry

    Full text link
    Utilizing the Two Micron All Sky Survey (2MASS) Second Incremental Data Release Catalog, we have retrieved near-IR magnitudes for several hundred hot subdwarfs (sdO and sdB stars) drawn from the "Catalogue of Spectroscopically Identified Hot Subdwarfs" (Kilkenny, Heber, & Drilling 1988, 1992). This sample size greatly exceeds that of previous studies of hot subdwarfs. Examining 2MASS photometry alone or in combination with visual photometry (Johnson BV or Stromgren uvby) available in the literature, we show that it is possible to identify hot subdwarf stars that exhibit atypically red IR colors that can be attributed to the presence of an unresolved late type companion. Utilizing this large sample, we attempt for the first time to define an approximately volume limited sample of hot subdwarfs. We discuss the considerations, biases, and difficulties in defining such a sample. We find that, of the hot subdwarfs in Kilkenny et al., about 40% in a magnitude limited sample have colors that are consistent with the presence of an unresolved late type companion. Binary stars are over-represented in a magnitude limited sample. In an approximately volume limited sample the fraction of composite-color binaries is about 30%.Comment: to appear in Sept 2003 AJ, 41 pages total, 12 figures, 2 tables are truncated (full tables to appear in electronic journal or available by request

    The Red Giant Branch in Near-Infrared Colour-Magnitude Diagrams. II: The luminosity of the Bump and the Tip

    Full text link
    We present new empirical calibrations of the Red Giant Branch (RGB) Bump and Tip based on a homogeneous near-Infrared database of 24 Galactic Globular Clusters. The luminosities of the RGB Bump and Tip in the J, H and K bands and their dependence on the cluster metallicity have been studied, yielding empirical relationships. By using recent transformations between the observational and theoretical planes, we also derived similar calibrations in terms of bolometric luminosity. Direct comparison between updated theoretical models and observations show an excellent agreement. The empirical calibration of the RGB Tip luminosity in the near-Infrared passbands presented here is a fundamental tool to derive distances to far galaxies beyond the Local Group, in view of using the new ground-based adaptive optics facilities and, in the next future, the James Webb Space Telescope.Comment: 7 pages, 7 figures, accepted for publication in MNRA

    Hot Horizontal-Branch Stars: The Ubiquitous Nature of the "Jump" in Stromgren u, Low Gravities, and the Role of Radiative Levitation of Metals

    Get PDF
    A "jump" in the BHB distribution in the V, u-y CMD was recently detected in the GC M13. It is morphologically best characterized as a discontinuity in u, u-y, with stars in the range 11,500<Teff(K)<20,000 deviating systematically from (in the sense of appearing brighter and/or hotter than) canonical ZAHBs. We present u, y photometry of 14 GCs obtained with 3 different telescopes (Danish, NOT, HST) and demonstrate that the u-jump is present in every GC whose HB extends beyond 11,500K, irrespective of [Fe/H], mixing history on the RGB, and other GC parameters. We suggest that the u-jump is a ubiquitous feature, intrinsic to all HB stars hotter than 11,500K. We draw a parallel between the ubiquitous nature of the u-jump and the problem of low measured gravities among BHB stars. We note that the "logg-jump" occurs over the same temperature range as the u-jump, and that it occurs in every metal-poor GC for which gravities have been determined--irrespective of [Fe/H], mixing history on the RGB, or any other GC parameters. Furthermore, the u-jump and the logg-jump are connected on a star-by-star basis. The two are likely different manifestations of the same physical phenomenon. We present a framework which may simultaneously account for the u-jump and the logg-jump. Reviewing spectroscopic data for several field BHB stars, as well as two BHB stars in the GC NGC 6752, we find evidence that radiative levitation of heavy elements takes place at Teff>11,500 K, dramatically enhancing their abundances in the atmospheres of BHB stars in the "critical" temperature region. Model atmospheres taking diffusion effects into account are badly needed, and will likely lead to better overall agreement between canonical evolutionary theory and observations for BHB stars.Comment: ApJ, Main Journal, accepted. Contains several changes and update

    NGC 2419: a large and extreme second generation in a currently undisturbed cluster

    Full text link
    We analyse complementary HST and SUBARU data for the globular cluster NGC 2419. We make a detailed analysis of the horizontal branch (HB), that appears composed by two main groups of stars: the luminous blue HB stars ---that extend by evolution into the RR Lyrae and red HB region--- and a fainter, extremely blue population. We examine the possible models for this latter group and conclude that a plausible explanation is that they correspond to a significant (~30 %) extreme second generation with a strong helium enhancement (Y~0.4). We also show that the color dispersion of the red giant branch is consistent with this hypothesis, while the main sequence data are compatible with it, although the large observational error blurs the possible underlying splitting. While it is common to find an even larger (50 -- 80) percentage of second generation in a globular cluster, the presence of a substantial and extreme fraction of these stars in NGC 2419 might be surprising, as the cluster is at present well inside the radius beyond which the galactic tidal field would be dominant. If a similar situation had been present in the first stages of the cluster life, the cluster would have retained its initial mass, and the percentage of second generation stars should have been quite small (up to ~10 %). Such a large fraction of extreme second generation stars implies that the system must have been initially much more massive and in different dynamical conditions than today. We discuss this issue in the light of existing models of the formation of multiple populations in globular clusters.Comment: 14 pages, 14 figures (5 in low resolution format), 3 tables, accepted for publication in MNRA

    Mass loss along the red giant branch in 46 Globular Clusters and their multiple populations

    Get PDF
    The location of Galactic Globular Clusters' (GC) stars on the horizontal branch (HB) should mainly depend on GC metallicity, the "first parameter", but it is actually the result of complex interactions between the red giant branch (RGB) mass loss, the coexistence of multiple stellar populations with different helium content, and the presence of a "second parameter" which produces dramatic differences in HB morphology of GCs of similar metallicity and ages (like the pair M3--M13). In this work, we combine the entire dataset from the Hubble Space Telescope Treasury survey and stellar evolutionary models, to analyse the HBs of 46 GCs. For the first time in a large sample of GCs, we generate population synthesis models, where the helium abundances for the first and the "extreme" second generations are constrained using independent measurements based on RGB stars. The main results are: 1) the mass loss of first generation stars is tightly correlated to cluster metallicity. 2) the location of helium enriched stars on the HB is reproduced only by adopting a higher RGB mass loss than for the first generation. The difference in mass loss correlates with helium enhancement and cluster mass. 3) A model of "pre-main sequence disc early loss", previously developed by the authors, explains such a mass loss increase and is consistent with the findings of multiple-population formation models predicting that populations more enhanced in helium tend to form with higher stellar densities and concentrations. 4) Helium-enhancement and mass-loss both contribute to the second parameter.Comment: 29 pages, 30 figures, 4 tables. Accepted for publication in MNRA

    The early evolution of Globular Clusters: the case of NGC 2808

    Full text link
    Enhancement and spread of helium among globular cluster stars have been recently suggested as a way to explain the horizontal branch blue tails, in those clusters which show a primordial spread in the abundances of CNO and other elements involved in advanced CNO burning (D'Antona et al. 2002). In this paper we examine the implications of the hypothesis that, in many globular clusters, stars were born in two separate events: an initial burst (first generation), which gives origin to probably all high and intermediate mass stars and to a fraction of the cluster stars observed today, and a second, prolonged star formation phase (second generation) in which stars form directly from the ejecta of the intermediate mass stars of the first generation. In particular, we consider in detail the morphology of the horizontal branch in NGC 2808 and argue that it unveils the early cluster evolution, from the birth of the first star generation to the end of the second phase of star formation. This framework provides a feasible interpretation for the still unexplained dichotomy of NGC 2808 horizontal branch, attributing the lack of stars in the RR Lyr region to the gap in the helium content between the red clump, whose stars are considered to belong to the first stellar generation and have primordial helium, and the blue side of the horizontal branch, whose minimum helium content reflects the helium abundance in the smallest mass (~4Msun)contributing to the second stellar generation. This scenario provides constraints on the required Initial Mass Function, in a way that a great deal of remnant neutron stars and stellar mass black holes might have been produced.Comment: 23 pages, 7 figures, in press on The Astrophysical Journa
    • …
    corecore