1,625 research outputs found

    Periodic solutions of a many-rotator problem in the plane. II. Analysis of various motions

    Get PDF
    Various solutions are displayed and analyzed (both analytically and numerically) of arecently-introduced many-body problem in the plane which includes both integrable and nonintegrable cases (depending on the values of the coupling constants); in particular the origin of certain periodic behaviors is explained. The light thereby shone on the connection among \textit{integrability} and \textit{analyticity} in (complex) time, as well as on the emergence of a \textit{chaotic} behavior (in the guise of a sensitive dependance on the initial data) not associated with any local exponential divergence of trajectories in phase space, might illuminate interesting phenomena of more general validity than for the particular model considered herein.Comment: Published by JNMP at http://www.sm.luth.se/math/JNMP

    Observable algebra for the rational and trigonometric Euler Calogero Moser models

    Full text link
    We construct polynomial Poisson algebras of observables for the classical Euler-Calogero-Moser (ECM) models. The conserved Hamiltonians and symmetry algebras derived in a previous work are subsets of these algebras. We define their linear, NN \rightarrow \infty limits, realizing \w_{\infty} type algebras coupled to current algebras.Comment: 11 pages; Latex; PAR LPTHE 94-16 Misprints and minor mistakes corrected; references update

    Two novel classes of solvable many-body problems of goldfish type with constraints

    Get PDF
    Two novel classes of many-body models with nonlinear interactions "of goldfish type" are introduced. They are solvable provided the initial data satisfy a single constraint (in one case; in the other, two constraints): i. e., for such initial data the solution of their initial-value problem can be achieved via algebraic operations, such as finding the eigenvalues of given matrices or equivalently the zeros of known polynomials. Entirely isochronous versions of some of these models are also exhibited: i.e., versions of these models whose nonsingular solutions are all completely periodic with the same period.Comment: 30 pages, 2 figure

    Knizhnik-Zamolodchikov equations and the Calogero-Sutherland-Moser integrable models with exchange terms

    Get PDF
    It is shown that from some solutions of generalized Knizhnik-Zamolodchikov equations one can construct eigenfunctions of the Calogero-Sutherland-Moser Hamiltonians with exchange terms, which are characterized by any given permutational symmetry under particle exchange. This generalizes some results previously derived by Matsuo and Cherednik for the ordinary Calogero-Sutherland-Moser Hamiltonians.Comment: 13 pages, LaTeX, no figures, to be published in J. Phys.

    On frequencies of small oscillations of some dynamical systems associated with root systems

    Full text link
    In the paper by F. Calogero and author [Commun. Math. Phys. 59 (1978) 109-116] the formula for frequencies of small oscillations of the Sutherland system (AlA_l case) was found. In present note the generalization of this formula for the case of arbitrary root system is given.Comment: arxiv version is already officia

    Poisson Structures for Aristotelian Model of Three Body Motion

    Full text link
    We present explicitly Poisson structures, for both time-dependent and time-independent Hamiltonians, of a dynamical system with three degrees of freedom introduced and studied by Calogero et al [2005]. For the time-independent case, new constant of motion includes all parameters of the system. This extends the result of Calogero et al [2009] for semi-symmetrical motion. We also discuss the case of three bodies two of which are not interacting with each other but are coupled with the interaction of third one

    Upper and lower limits on the number of bound states in a central potential

    Full text link
    In a recent paper new upper and lower limits were given, in the context of the Schr\"{o}dinger or Klein-Gordon equations, for the number N0N_{0} of S-wave bound states possessed by a monotonically nondecreasing central potential vanishing at infinity. In this paper these results are extended to the number NN_{\ell} of bound states for the \ell-th partial wave, and results are also obtained for potentials that are not monotonic and even somewhere positive. New results are also obtained for the case treated previously, including the remarkably neat \textit{lower} limit N{{[σ/(2+1)+1]/2}}N_{\ell}\geq \{\{[\sigma /(2\ell+1)+1]/2\}\} with V(r)1/2]% \sigma =(2/\pi) \underset{0\leq r<\infty}{\max}[r| V(r)| ^{1/2}] (valid in the Schr\"{o}dinger case, for a class of potentials that includes the monotonically nondecreasing ones), entailing the following \textit{lower} limit for the total number NN of bound states possessed by a monotonically nondecreasing central potential vanishing at infinity: N\geq \{\{(\sigma+1)/2\}\} {(\sigma+3)/2\} \}/2 (here the double braces denote of course the integer part).Comment: 44 pages, 5 figure

    Generalization of a result of Matsuo and Cherednik to the Calogero-Sutherland- Moser integrable models with exchange terms

    Full text link
    A few years ago, Matsuo and Cherednik proved that from some solutions of the Knizhnik-Zamolodchikov (KZ) equations, which first appeared in conformal field theory, one can obtain wave functions for the Calogero integrable system. In the present communication, it is shown that from some solutions of generalized KZ equations, one can construct wave functions, characterized by any given permutational symmetry, for some Calogero-Sutherland-Moser integrable models with exchange terms. Such models include the spin generalizations of the original Calogero and Sutherland ones, as well as that with δ\delta-function interaction.Comment: Latex, 7 pages, Communication at the 4th Colloquium "Quantum Groups and Integrable Systems", Prague (June 1995

    Crossover from Fermi Liquid to Non-Fermi Liquid Behavior in a Solvable One-Dimensional Model

    Full text link
    We consider a quantum moany-body problem in one-dimension described by a Jastrow type, characterized by an exponent λ\lambda and a parameter γ\gamma. We show that with increasing γ\gamma, the Fermi Liquid state (γ=0)\gamma=0) crosses over to non-Fermi liquid states, characterized by effective "temperature".Comment: 8pp. late

    Goldfishing by gauge theory

    Full text link
    A new solvable many-body problem of goldfish type is identified and used to revisit the connection among two different approaches to solvable dynamical systems. An isochronous variant of this model is identified and investigated. Alternative versions of these models are presented. The behavior of the alternative isochronous model near its equilibrium configurations is investigated, and a remarkable Diophantine result, as well as related Diophantine conjectures, are thereby obtained.Comment: 22 page
    corecore