7,131 research outputs found
Effective calculation of LEED intensities using symmetry-adapted functions
The calculation of LEED intensities in a spherical-wave representation can be substantially simplified by symmetry relations. The wave field around each atom is expanded in symmetry-adapted functions where the local point symmetry of the atomic site applies. For overlayer systems with more than one atom per unit cell symmetry-adapted functions can be used when the division of the crystal into monoatomic subplanes is replaced by division into subplanes containing all symmetrically equivalent atomic positions
Decoherence time in self-induced decoherence
A general method for obtaining the decoherence time in self-induced
decoherence is presented. In particular, it is shown that such a time can be
computed from the poles of the resolvent or of the initial conditions in the
complex extension of the Hamiltonian's spectrum. Several decoherence times are
estimated: for microscopic systems, and
for macroscopic bodies. For the particular case of a
thermal bath, our results agree with those obtained by the einselection
(environment-induced decoherence) approach.Comment: 11 page
From Bloch model to the rate equations II: the case of almost degenerate energy levels
Bloch equations give a quantum description of the coupling between an atom
and a driving electric force. In this article, we address the asymptotics of
these equations for high frequency electric fields, in a weakly coupled regime.
We prove the convergence towards rate equations (i.e. linear Boltzmann
equations, describing the transitions between energy levels of the atom). We
give an explicit form for the transition rates. This has already been performed
in [BFCD03] in the case when the energy levels are fixed, and for different
classes of electric fields: quasi or almost periodic, KBM, or with continuous
spectrum. Here, we extend the study to the case when energy levels are possibly
almost degenerate. However, we need to restrict to quasiperiodic forcings. The
techniques used stem from manipulations on the density matrix and the averaging
theory for ordinary differential equations. Possibly perturbed small divisor
estimates play a key role in the analysis. In the case of a finite number of
energy levels, we also precisely analyze the initial time-layer in the rate
aquation, as well as the long-time convergence towards equilibrium. We give
hints and counterexamples in the infinite dimensional case
Swimming is never without risk: opening up on learning through activism and research
This article examines my own becoming as Elisabeth and as a researcher. It is about working as a support worker, coaching teams that are trying to realize inclusive education for a child, and my PhD process, which relies on these practices. My intention here is to unfold several aspects, blockages, possibilities, and tensions that can make sense of my messy struggle. The never-ending learning through working with people, listening to their stories, and taking responsibility are important ingredients of my engagement. It is necessary to provide insights and justify my multiple positions to avoid falling into a narcissistic trap. In doing so, I will seek help from Levinas and in concepts of Deleuze and Guattari to (re-)construct my own understanding
Quantum chaos, random matrix theory, and statistical mechanics in two dimensions - a unified approach
We present a theory where the statistical mechanics for dilute ideal gases
can be derived from random matrix approach. We show the connection of this
approach with Srednicki approach which connects Berry conjecture with
statistical mechanics. We further establish a link between Berry conjecture and
random matrix theory, thus providing a unified edifice for quantum chaos,
random matrix theory, and statistical mechanics. In the course of arguing for
these connections, we observe sum rules associated with the outstanding
counting problem in the theory of braid groups. We are able to show that the
presented approach leads to the second law of thermodynamics.Comment: 23 pages, TeX typ
Manifestation of quantum chaos on scattering techniques: application to low-energy and photo-electron diffraction intensities
Intensities of LEED and PED are analyzed from a statistical point of view.
The probability distribution is compared with a Porter-Thomas law,
characteristic of a chaotic quantum system. The agreement obtained is
understood in terms of analogies between simple models and Berry's conjecture
for a typical wavefunction of a chaotic system. The consequences of this
behaviour on surface structural analysis are qualitatively discussed by looking
at the behaviour of standard correlation factors.Comment: 5 pages, 4 postscript figures, Latex, APS,
http://www.icmm.csic.es/Pandres/pedro.ht
Hydrodynamics near the QCD Phase Transition: Looking for the Longest-Lived Fireball
We propose a new strategy for the experimental search of the QCD phase
transition in heavy ion collisions: One may tune collision energy around the
point where the lifetime of the fireball is expected to be longest. We
demonstrate that the hydrodynamic evolution of excited nuclear matter does
change dramatically as the initial energy density goes through the "softest
point" (where the pressure to energy density ratio reaches its minimum). For
our choice of equation of state, this corresponds to epsilon_i approx. = 1.5
GeV/fm^3 and collision energy E_lab/A approx. = 30 GeV (for Au+Au). Various
observables seem to show distinct changes near the softest point.Comment: 7 pages, 3 Postscript figures (tar compressed and uuencoded)
submitte
Bias-assisted photoelectrochemical etching of p-GaN at 300 K
Photoelectrochemical (PEC)etching of p-type GaN has been realized in room temperature, 0.1 M KOH solutions. PECetching of GaN was achieved by applying a positive bias to the surface of the p-GaN layer through a deposited titanium mask. The applied bias reduces the field at the semiconductor surface, which induced the dissolution of the GaN. The effect of bias on etch rate and morphology was examined. It was found that insulating the Ti mask from the KOH solution with Si3N4 significantly increases the etch rate. The rms roughness of the etched region decreased as the bias voltage increased. Etch rates as high as 4.4 nm/min were recorded for films etched at 2 V
- …