11,949 research outputs found
Supersymmetry and LHC
The motivation for introduction of supersymmetry in high energy physics as
well as a possibility for supersymmetry discovery at LHC (Large Hadronic
Collider) are discussed. The main notions of the Minimal Supersymmetric
Standard Model (MSSM) are introduced. Different regions of parameter space are
analyzed and their phenomenological properties are compared. Discovery
potential of LHC for the planned luminosity is shown for different channels.
The properties of SUSY Higgs bosons are studied and perspectives of their
observation at LHC are briefly outlined.Comment: Lectures given at the 9th Moscow International School of Physics
(XXXIV ITEP Winter School of Physics
Diamond thin Film Detectors for Beam Monitoring Devices
Diamonds offer radiation hard sensors, which can be used directly in primary
beams. Here we report on the use of a polycrystalline CVD diamond strip sensor
as beam monitor of heavy ion beams with up to 2.10^9 lead ions per bunch. The
strips allow for a determination of the transverse beam profile to a fraction
of the pitch of the strips, while the timing information yields the
longitudinal bunch length with a resolution of the order of a few mm.Comment: 6 pages, 7 figures, to appear in the Proceedings of the Hasselt
Diamond Workshop (Hasselt, Belgium, Feb. 2006), v4: accidentally submitted
figure, appearing at end, remove
Gate-tunable band structure of the LaAlO-SrTiO interface
The 2-dimensional electron system at the interface between LaAlO and
SrTiO has several unique properties that can be tuned by an externally
applied gate voltage. In this work, we show that this gate-tunability extends
to the effective band structure of the system. We combine a magnetotransport
study on top-gated Hall bars with self-consistent Schr\"odinger-Poisson
calculations and observe a Lifshitz transition at a density of
cm. Above the transition, the carrier density of one
of the conducting bands decreases with increasing gate voltage. This surprising
decrease is accurately reproduced in the calculations if electronic
correlations are included. These results provide a clear, intuitive picture of
the physics governing the electronic structure at complex oxide interfaces.Comment: 14 pages, 4 figure
Constraints on Supersymmetry from Relic Density compared with future Higgs Searches at the LHC
Among the theories beyond the Standard Model (SM) of particle physics
Supersymmetry (SUSY) provides an excellent dark matter (DM) candidate, the
neutralino. One clear prediction of cosmology is the annihilation cross section
of DM particles, assuming them to be a thermal relic from the early universe.
In most of the parameter space of Supersymmetry the annihilation cross section
is too small compared with the prediction of cosmology. However, for large
values of the tan beta parameter the annihilation through s-channel
pseudoscalar Higgs exchange yields the correct relic density in practically the
whole range of possible SUSY masses up to the few TeV range. The required
values of tan beta are typically around 50, i.e. of the order of top and bottom
mass ratio, which happens to be also the range allowing for Yukawa unification
in a Grand Unified Theory with gauge coupling unification. For such large
values of tan beta the associated production of the heavier Higgses, which is
enhanced by tan beta squared, becomes three orders of magnitude larger than the
production of a simlar SM-like Higgs and could be observable as one of the
first hints of new physics at the LHC.Comment: 12 pages, 5 figures, Published version in Phys. Lett. B with updated
references and minor correction
The Asymptotic Giant Branches of GCs: Selective Entry Only
The handful of available observations of AGB stars in Galactic Globular
Clusters suggest that the GC AGB populations are dominated by cyanogen-weak
stars. This contrasts strongly with the distributions in the RGB (and other)
populations, which generally show a 50:50 bimodality in CN band strength. If it
is true that the AGB populations show very different distributions then it
presents a serious problem for low mass stellar evolution theory, since such a
surface abundance change going from the RGB to AGB is not predicted by stellar
models. However this is only a tentative conclusion, since it is based on very
small AGB sample sizes. To test whether this problem really exists we have
carried out an observational campaign specifically targeting AGB stars in GCs.
We have obtained medium resolution spectra for about 250 AGB stars across 9
Galactic GCs using the multi-object spectrograph on the AAT (2df/AAOmega). We
present some of the preliminary findings of the study for the second parameter
trio of GCs: NGC 288, NGC 362 and NGC 1851. The results indeed show that there
is a deficiency of stars with strong CN bands on the AGB. To confirm that this
phenomenon is robust and not just confined to CN band strengths and their
vagaries, we have made observations using FLAMES/VLT to measure elemental
abundances for NGC 6752.We present some initial results from this study also.
Our sodium abundance results show conclusively that only a subset of stars in
GCs experience the AGB phase of evolution. This is the first direct, concrete
confirmation of the phenomenon.Comment: 4 pages, to appear in conference proceedings of "Reading the book of
globular clusters with the lens of stellar evolution", Rome, 26-28 November
201
Semiclassical corrections to the interaction energy of a hard-sphere Boltzmann gas
Quantum effects in statistical mechanics are important when the thermal
wavelength is of the order of, or greater than, the mean interatomic spacing.
This is examined at depth taking the example of a hard-sphere Boltzmann gas.
Using the virial expansion for the equation of state, it is shown that the
interaction energy of a classical hard-sphere gas is exactly zero. When the
(second) virial coefficient of such a gas is obtained quantum mechanically,
however, the quantum contribution to the interaction energy is shown to be
substantial. The importance of the semiclassical corrections to the interaction
energy shows up dramatically in such a system.Comment: 9 pages, 3 figures, submitted to Eur. J. Phy
A multi-detector array for high energy nuclear e+e- pair spectrosocopy
A multi-detector array has been constructed for the simultaneous measurement
of energy- and angular correlation of electron-positron pairs produced in
internal pair conversion (IPC) of nuclear transitions up to 18 MeV. The
response functions of the individual detectors have been measured with
mono-energetic beams of electrons. Experimental results obtained with 1.6 MeV
protons on targets containing B and F show clear IPC over a wide
angular range. A comparison with GEANT simulations demonstrates that angular
correlations of pairs of transitions in the energy range between 6 and
18 MeV can be determined with sufficient resolution and efficiency to search
for deviations from IPC due to the creation and subsequent decay into
of a hypothetical short-lived neutral boson.Comment: 20 pages, 8 figure
Where is SUSY?
The direct searches for Superymmetry at colliders can be complemented by
direct searches for dark matter (DM) in underground experiments, if one assumes
the Lightest Supersymmetric Particle (LSP) provides the dark matter of the
universe. It will be shown that within the Constrained minimal Supersymmetric
Model (CMSSM) the direct searches for DM are complementary to direct LHC
searches for SUSY and Higgs particles using analytical formulae. A combined
excluded region from LHC, WMAP and XENON100 will be provided, showing that
within the CMSSM gluinos below 1 TeV and LSP masses below 160 GeV are excluded
(m_{1/2} > 400 GeV) independent of the squark masses.Comment: 16 pages, 10 figure
- …