8,612 research outputs found

    Delineation of a unique protein-protein interaction site on the surface of the estrogen receptor

    Get PDF
    Recent studies have identified a series of estrogen receptor (ER)interacting peptides that recognize sites that are distinct from the classic coregulator recruitment (AF2) region. Here, we report the structural and functional characterization of an ER alpha-specific peptide that binds to the liganded receptor in an AF2-independent manner. The 2-angstrom crystal structure of the ER/peptide complex reveals a binding site that is centered on a shallow depression on the beta-hairpin face of the ligand-binding domain. The peptide binds in an unusual extended conformation and makes multiple contacts with the ligand-binding domain. The location and architecture of the binding site provides an insight into the peptide's ER subtype specificity and ligand interaction preferences. In vivo, an engineered coactivator containing the peptide motif is able to strongly enhance the transcriptional activity of liganded ER alpha, particularly in the presence of 4-hydroxytamoxifen. Furthermore, disruption of this binding surface alters ER's response to the coregulator TIF2. Together, these results indicate that this previously unknown interaction site represents a bona fide control surface involved in regulating receptor activity

    Pressure as a Source of Gravity

    Full text link
    The active mass density in Einstein's theory of gravitation in the analog of Poisson's equation in a local inertial system is proportional to ρ+3p/c2\rho+3p/c^2. Here ρ\rho is the density of energy and pp its pressure for a perfect fluid. By using exact solutions of Einstein's field equations in the static case we study whether the pressure term contributes towards the mass

    The search for black hole binaries using a genetic algorithm

    Full text link
    In this work we use genetic algorithm to search for the gravitational wave signal from the inspiralling massive Black Hole binaries in the simulated LISA data. We consider a single signal in the Gaussian instrumental noise. This is a first step in preparation for analysis of the third round of the mock LISA data challenge. We have extended a genetic algorithm utilizing the properties of the signal and the detector response function. The performance of this method is comparable, if not better, to already existing algorithms.Comment: 11 pages, 4 figures, proceeding for GWDAW13 (Puerto Rico

    Momentum-Resolved Electronic Structure of the High-TcT_{c} Superconductor Parent Compound BaBiO3_{3}

    Full text link
    We investigate the band structure of BaBiO3_{3}, an insulating parent compound of doped high-TcT_{c} superconductors, using \emph{in situ} angle-resolved photoemission spectroscopy on thin films. The data compare favorably overall with density functional theory calculations within the local density approximation, demonstrating that electron correlations are weak. The bands exhibit Brillouin zone folding consistent with known BiO6_{6} breathing distortions. Though the distortions are often thought to coincide with Bi3+^{3+}/Bi5+^{5+} charge ordering, core level spectra show that bismuth is monovalent. We further demonstrate that the bands closest to the Fermi level are primarily oxygen derived, while the bismuth 6s6s states mostly contribute to dispersive bands at deeper binding energy. The results support a model of Bi-O charge transfer in which hole pairs are localized on combinations of the O 2p2p orbitals.Comment: minor changes to text and other figures; includes link to online Supplemental Material; accepted to Phys. Rev. Let

    Ground State Energy of the One-Component Charged Bose Gas

    Full text link
    The model considered here is the `jellium' model in which there is a uniform, fixed background with charge density eρ-e\rho in a large volume VV and in which N=ρVN=\rho V particles of electric charge +e+e and mass mm move --- the whole system being neutral. In 1961 Foldy used Bogolubov's 1947 method to investigate the ground state energy of this system for bosonic particles in the large ρ\rho limit. He found that the energy per particle is 0.402rs3/4me4/2-0.402 r_s^{-3/4} {me^4}/{\hbar^2} in this limit, where rs=(3/4πρ)1/3e2m/2r_s=(3/4\pi \rho)^{1/3}e^2m/\hbar^2. Here we prove that this formula is correct, thereby validating, for the first time, at least one aspect of Bogolubov's pairing theory of the Bose gasComment: 38 pages latex. Typos corrected.Lemma 6.2 change

    Intersection of a domains in the c-domain matrix driven by electric field in tetragonal ferroelectric crystal

    Get PDF
    Domain structures in a tetragonal ferroelectric crystal were examined by transmission electron microscopy(TEM) before and after application of bipolar cyclic electric fields. Prior to the application of the bipolar field, the crystal was poled to an initial domain structure which consisted of a high volume fraction of c domains. Dispersed in the matrix of the c domains were two orthogonal sets of a-domain strips. These two sets of a-domain strips stayed apart to avoid direct contact. Upon application of bipolar cyclic electric fields, intersections of the a domains were observed in the ⟨001⟩-oriented tetragonal ferroelectric crystal. These intersections were formed as one set of the a domains grew under the influence of the in-plane electric field. As a result of the domain wall intersection, segments of the domain wall between two intersecting a domains carried excess electric charges. In the successive TEM examination, domain wall distortion and microcracks were found at these intersections

    Quasiperiodic Tip Splitting in Directional Solidification

    Full text link
    We report experimental results on the tip splitting dynamics of seaweed growth in directional solidification of succinonitrile alloys with poly(ethylene oxide) or acetone as solutes. The seaweed or dense branching morphology was selected by solidifying grains which are oriented close to the {111} plane. Despite the random appearance of the growth, a quasiperiodic tip splitting morphology was observed in which the tip alternately splits to the left and to the right. The tip splitting frequency f was found to be related to the growth velocity V as a power law f V^{1.5}. This finding is consistent with the predictions of a tip splitting model that is also presented. Small anisotropies are shown to lead to different kinds of seaweed morphologies.Comment: 4 pages, 7 figures, submitted to Physical Review Letter

    A New Scheme for Acoustical Tomography of the Ocean

    Get PDF
    Award #: N00014-95-F-0046 http://www.etl.noaa.gov LONG-TERM GOAL The long-term purpose is to develop a new scheme of the acoustical tomography of the ocean of mesoto global scales which is based on measurements of horizontal-refraction angle (HRA) related to different acoustic modes rather than travel time along different rays. OBJECTIVES To develop robust inversion scheme for retrieving 3-D ocean inner structure based on measurements of HRA. In spite of its small value HRA angle can be easily measured with the help of pair of moderesolving line vertical arrays situated about 10 km apart (ocean interferometer). As a first approximation adiabaticity of mode propagation should be assumed. Then the scheme should be generalized to the case of non-adiabatic propagation with mode interaction taken into account in a "N 2-D" approximation, and appropriate computer simulations should be performed. Scattering of acoustic signals from internal waves should be also considered, and its effect on the accuracy of sound speed field retrieval should be estimated. APPROACH A low frequency tonal sound source (F = 30-100 Hz) is assumed to be towed by a vessel around the area of interest with typical horizontal scale of the order of 1000 km. The transmitted signal is received by acoustic interferometers located inside or outside the area. Thus, the area is exposed from different directions, and HRA is known as a function of source position. Those data are then used for tomography inversion. In the general case, acoustic mode interaction due to water mass inhomogeneity should be taken into account. This is accomplished with the help of iterations. In the first approximation mode interaction is neglected, and HRA are inverted into sound speed profiles assuming adiabatic propagation. The inversion proceeds in two stages: 1) 2-D tomography which retrieves propagation constants of different modes at the nodes of horizontal rectangular grid covering the area. 2) 1-D tomography which retrieves sound speed profile (in terms of expansion with respect to a set of empirical orthogonal functions) at each node of horizontal grid based on already determined values of propagation constants. Then the contribution to horizontal refraction due to mode interaction are calculated with respect to retrieved inhomogeneous medium using propagation code which takes into account mode interactions in
    corecore