8,343 research outputs found
Continuous wave detector has wide frequency range
Portable battery-operated detector indicates the presence of steady state signals exceeding a predetermined value over a wide frequency range by the closure of output relay contacts. It was designed to monitor electronic equipment used in the Saturn 2 program
Measurement of an integral of a classical field with a single quantum particle
A method for measuring an integral of a classical field via local interaction
of a single quantum particle in a superposition of 2^N states is presented. The
method is as efficient as a quantum method with N qubits passing through the
field one at a time and it is exponentially better than any known classical
method that uses N bits passing through the field one at a time. A related
method for searching a string with a quantum particle is proposed.Comment: 3 page
Exploring approximations to the GW self-energy ionic gradients
The accuracy of the many-body perturbation theory GW formalism to calculate
electron-phonon coupling matrix elements has been recently demonstrated in the
case of a few important systems. However, the related computational costs are
high and thus represent strong limitations to its widespread application. In
the present study, we explore two less demanding alternatives for the
calculation of electron-phonon coupling matrix elements on the many-body
perturbation theory level. Namely, we test the accuracy of the static
Coulomb-hole plus screened-exchange (COHSEX) approximation and further of the
constant screening approach, where variations of the screened Coulomb potential
W upon small changes of the atomic positions along the vibrational eigenmodes
are neglected. We find this latter approximation to be the most reliable,
whereas the static COHSEX ansatz leads to substantial errors. Our conclusions
are validated in a few paradigmatic cases: diamond, graphene and the C60
fullerene. These findings open the way for combining the present many-body
perturbation approach with efficient linear-response theories
Early out-of-equilibrium beam-plasma evolution
We solve analytically the out-of-equilibrium initial stage that follows the
injection of a radially finite electron beam into a plasma at rest and test it
against particle-in-cell simulations. For initial large beam edge gradients and
not too large beam radius, compared to the electron skin depth, the electron
beam is shown to evolve into a ring structure. For low enough transverse
temperatures, the filamentation instability eventually proceeds and saturates
when transverse isotropy is reached. The analysis accounts for the variety of
very recent experimental beam transverse observations.Comment: to appear in Phys. Rev. Letter
A simple and optimal ancestry labeling scheme for trees
We present a ancestry labeling scheme for trees. The
problem was first presented by Kannan et al. [STOC 88'] along with a simple solution. Motivated by applications to XML files, the label size was
improved incrementally over the course of more than 20 years by a series of
papers. The last, due to Fraigniaud and Korman [STOC 10'], presented an
asymptotically optimal labeling scheme using
non-trivial tree-decomposition techniques. By providing a framework
generalizing interval based labeling schemes, we obtain a simple, yet
asymptotically optimal solution to the problem. Furthermore, our labeling
scheme is attained by a small modification of the original solution.Comment: 12 pages, 1 figure. To appear at ICALP'1
Fiber-Cavity-Based Optomechanical Device
We describe an optomechanical device consisting of a fiber-based optical
cavity containing a silicon nitiride membrane. In comparison with typical
free-space cavities, the fiber-cavity's small mode size (10 {\mu}m waist, 80
{\mu}m length) allows the use of smaller, lighter membranes and increases the
cavity-membrane linear coupling to 3 GHz/nm and quadratic coupling to 20
GHz/nm^2. This device is also intrinsically fiber-coupled and uses glass
ferrules for passive alignment. These improvements will greatly simplify the
use of optomechanical systems, particularly in cryogenic settings. At room
temperature, we expect these devices to be able to detect the shot noise of
radiation pressure.Comment: 4 pages, 3 figures; the following article has been submitted to
Applied Physics Letter
Effective Screened Potentials of Strongly Coupled Semiclassical Plasma
The pseudopotentials of particle interaction of astrongly coupled
semiclassical plasma, taking into account bothquantum-mechanical effects of
diffraction at short distances andalso screening field effects at large
distances are obtained. Thelimiting cases of potentials are considered.Comment: 15 pages, TeX, 7 figure
Multipartite pure-state entanglement and the generalized GHZ states
We show that not all 4-party pure states are GHZ reducible (i.e., can be
generated reversibly from a combination of 2-, 3- and 4-party maximally
entangled states by local quantum operations and classical communication
asymptotically) through an example, we also present some properties of the
relative entropy of entanglement for those 3-party pure states that are GHZ
reducible, and then we relate these properties to the additivity of the
relative entropy of entanglement.Comment: 7 pages, Revtex, type error correcte
On the role of entanglement in quantum computational speed-up
For any quantum algorithm operating on pure states we prove that the presence
of multi-partite entanglement, with a number of parties that increases
unboundedly with input size, is necessary if the quantum algorithm is to offer
an exponential speed-up over classical computation. Furthermore we prove that
the algorithm can be classically efficiently simulated to within a prescribed
tolerance \eta even if a suitably small amount of global entanglement
(depending on \eta) is present. We explicitly identify the occurrence of
increasing multi-partite entanglement in Shor's algorithm. Our results do not
apply to quantum algorithms operating on mixed states in general and we discuss
the suggestion that an exponential computational speed-up might be possible
with mixed states in the total absence of entanglement. Finally, despite the
essential role of entanglement for pure state algorithms, we argue that it is
nevertheless misleading to view entanglement as a key resource for quantum
computational power.Comment: Main proofs simplified. A few further explanatory remarks added. 22
pages, plain late
The Measurement Calculus
Measurement-based quantum computation has emerged from the physics community
as a new approach to quantum computation where the notion of measurement is the
main driving force of computation. This is in contrast with the more
traditional circuit model which is based on unitary operations. Among
measurement-based quantum computation methods, the recently introduced one-way
quantum computer stands out as fundamental.
We develop a rigorous mathematical model underlying the one-way quantum
computer and present a concrete syntax and operational semantics for programs,
which we call patterns, and an algebra of these patterns derived from a
denotational semantics. More importantly, we present a calculus for reasoning
locally and compositionally about these patterns.
We present a rewrite theory and prove a general standardization theorem which
allows all patterns to be put in a semantically equivalent standard form.
Standardization has far-reaching consequences: a new physical architecture
based on performing all the entanglement in the beginning, parallelization by
exposing the dependency structure of measurements and expressiveness theorems.
Furthermore we formalize several other measurement-based models:
Teleportation, Phase and Pauli models and present compositional embeddings of
them into and from the one-way model. This allows us to transfer all the theory
we develop for the one-way model to these models. This shows that the framework
we have developed has a general impact on measurement-based computation and is
not just particular to the one-way quantum computer.Comment: 46 pages, 2 figures, Replacement of quant-ph/0412135v1, the new
version also include formalization of several other measurement-based models:
Teleportation, Phase and Pauli models and present compositional embeddings of
them into and from the one-way model. To appear in Journal of AC
- …