124 research outputs found
Effects of decontamination, sterilization, and preconditioning treatments on energy- dissipating properties of balsa wood
Decontamination, sterilization, and preconditioning effects on energy dissipating properties of balsa woo
Automatic sample rotator for metallographic polishing
Simple, inexpensive device can be attached to most metallographic sample polishing tables. It provides a suitable surface finish for microscopic examination or photography of surface details of the samples
Rapid-Rate Compression Testing of Sheet Materials at High Temperatures
This Report describes the test equipment that was developed and the procedures that were used to evaluate structural sheet-material compression properties at preselected constant strain rates and/or loads. Electrical self-resistance was used to achieve a rapid heating rate of 200 F/sec. Four materials were tested at maximum temperatures which ranged from 600 F for the aluminum alloy to 2000 F for the Ni-Cr-Co iron-base alloy. Tests at 0.1, 0.001, and 0.00001 in./in./sec showed that strain rate has a major effect on the measured strength, especially at the high temperatures. The tests, under conditions of constant temperature and constant compression stress, showed that creep deformation can be a critical factor even when the time involved is on the order of a few seconds or less. The theoretical and practical aspects of rapid-rate compression testing are presented, and suggestions are made regarding possible modifications of the equipment which would improve the over-all capabilities
Thermal Properties of a Simulated Lunar Material in Air and in Vacuum
Thermal properties of simulated lunar material in air and in vacuu
The Bearing Capacity of Simulated Lunar Surfaces in Vacuum
The static bearing capacity of a granular material consisting of dry, crushed olivine basalt was determined in air and in a 10^(-6) mm Hg vacuum by means of cylindrical probes with a range of diameters. Samples with various particle size distributions (all below 35 mesh) were used for these tests. It was found that the packing density of these granular materials was the factor which had the greatest effect on the bearing capacity. The minimum bearing capacity of a loosely packed sample with a density of 1.25 g/cm^3 was about 0.1 kg/cm^2. The maximum bearing capacity of a densely packed sample with density of 2.1 g/cm^3 was about 7 kg/cm^2. The effects of vacuum were insignificant compared with the effect of packing density. Direct shear tests indicated the cohesion in a few densely packed samples to be 1-2 X 10^4 dynes/cm^2. For the small probes used, the cohesion was estimated to contribute 85 to 95% of the observed bearing capacity for the densely packed samples, but much less for the loosely packed samples
Relic Neutralino Densities and Detection Rates with Nonuniversal Gaugino Masses
We extend previous analyses on the interplay between nonuniversalities in the
gaugino mass sector and the thermal relic densities of LSP neutralinos, in
particular to the case of moderate to large tan beta. We introduce a set of
parameters that generalizes the standard unified scenario to cover the complete
allowed parameter space in the gaugino mass sector. We discuss the physical
significance of the cosmologically preferred degree of degeneracy between
charginos and the LSP and study the effect this degree of degeneracy has on the
prospects for direct detection of relic neutralinos in the next round of dark
matter detection experiments. Lastly, we compare the fine tuning required to
achieve a satisfactory relic density with the case of universal gaugino masses,
as in minimal supergravity, and find it to be of a similar magnitude. The
sensitivity of quantifiable measures of fine-tuning on such factors as the
gluino mass and top and bottom masses is also examined.Comment: Uses RevTeX; 14 pages, 16 figure
Cell Specific eQTL Analysis without Sorting Cells
The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus
Methylene blue treatment of fatal cerebral malaria and identification of potential blood biomarkers
Cerebral malaria (CM) is a severe complication caused by Plasmodium falciparum infection, leading to persistent neurological impairments in survivors. To understand the complex mechanisms and investigate advanced diagnostic and treatment strategies targeting human CM, we utilize Plasmodium coatneyi-infected male rhesus macaques, a non-human primate model closely resembling P. falciparum infection in humans. Through differential gene expression analysis, our study demonstrates methylene blue’s efficacy in reversing the detrimental effects of infection on the brainstem. Furthermore, by comparing our brainstem dataset from P. coatneyi-infected Macaca mulatta with two additional transcriptomic datasets (P. coatneyi-infected M. mulatta blood and P. falciparum-infected human blood), we identify nine genes associated with CM severity. Most of these genes are expressed in neutrophils, indicating their potential as blood biomarkers for diagnosing P. falciparum-induced fatal CM. This research highlights the necessity for new CM treatments and reveals promising biomarkers that could improve diagnosis and prognosis in affected individuals
Coagulation factor X promotes resistance to androgen-deprivation therapy in prostate cancer
\ua9 2024 The Author(s). Although hypercoagulability is commonly associated with malignancies, whether coagulation factors directly affect tumor cell proliferation remains unclear. Herein, by performing single-cell RNA sequencing (scRNA-seq) of the prostate tumor microenvironment (TME) of mouse models of castration-resistant prostate cancer (CRPC), we report that immunosuppressive neutrophils (PMN-MDSCs) are a key extra-hepatic source of coagulation factor X (FX). FX activation within the TME enhances androgen-independent tumor growth by activating the protease-activated receptor 2 (PAR2) and the phosphorylation of ERK1/2 in tumor cells. Genetic and pharmacological inhibition of factor Xa (FXa) antagonizes the oncogenic activity of PMN-MDSCs, reduces tumor progression, and synergizes with enzalutamide therapy. Intriguingly, F10high PMN-MDSCs express the surface marker CD84 and CD84 ligation enhances F10 expression. Elevated levels of FX, CD84, and PAR2 in prostate tumors associate with worse survival in CRPC patients. This study provides evidence that FXa directly promotes cancer and highlights additional targets for PMN-MDSCs for cancer therapies
- …
