335 research outputs found

    Zum biochemischen Wirkungsmechanismus des adrenocorticotropen Hormons

    Get PDF
    Es wird eine Übersicht über zwei Hypothesen und die dazugehörigen Befunde zum Wirkungsmechanismus des adrenocorticotropen Hormons gegeben: 1. Der Gehalt der Nebenniere an cyclischem Adenosinmonophosphat wird durch ACTH erhöht, die stimulierende Wirkung des Hormons auf die Corticoidsynthese wird durch cyclisches Adenosinmonophosphat imitiert. Die Beschleunigung der Corticoidsynthese dürfte allerdings nicht durch eine Aktivierung der Phosphorylase in der Nebenniere erfolgen. 2. Befunde zum biochemischen Mechanismus der Stimulation der Proteinsynthese in der Nebenniere durch ACTH werden referiert. Die Intaktheit der Proteinsynthese der Nebenniere scheint für den steroidogenen Effekt des ACTH Voraussetzung zu sein.Two current hypotheses on the mechanism of action of ACTH are reviewed: 1. The content of cyclic 3,5-adenosine monophosphate of the adrenals is increased by ACTH, and cyclic AMP or ACTH enhance corticoid synthesis. However, stimulation of corticoid synthesis presumably is not mediated by activation of adrenal phosphorylase. 2. Experiments dealing with the biochemical mechanism of the stimulation of adrenal protein synthesis are reviewed. The integrity of the adrenal protein synthesis appears to be necessary for the enhancement of corticoid synthesis by ACTH

    Role of nonhuman primate models in the discovery and clinical development of selective progesterone receptor modulators (SPRMs)

    Get PDF
    Selective progesterone receptor modulators (SPRMs) represent a new class of progesterone receptor ligands that exert clinically relevant tissue-selective progesterone agonist, antagonist, partial, or mixed agonist/antagonist effects on various progesterone target tissues in an in vivo situation depending on the biological action studied. The SPRM asoprisnil is being studied in women with symptomatic uterine leiomyomata and endometriosis. Asoprisnil shows a high degree of uterine selectivity as compared to effects on ovulation or ovarian hormone secretion in humans. It induces amenorrhea and decreases leiomyoma volume in a dose-dependent manner in the presence of follicular phase estrogen concentrations. It also has endometrial antiproliferative effects. In pregnant animals, the myometrial, i.e. labor-inducing, effects of asoprisnil are blunted or absent. Studies in non-human primates played a key role during the preclinical development of selective progesterone receptor modulators. These studies provided the first evidence of uterus-selective effects of asoprisnil and structurally related compounds, and the rationale for clinical development of asoprisnil

    A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori

    Get PDF
    In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence

    Skeletal abnormalities of acrogeria, a progeroid syndrome

    Full text link
    We report the skeletal abnormalities in a 4 1/2-year-old boy with acrogeria, a progeroid syndrome of premature aging of the skin without the involvement of internal organs seen in Hutchinson-Gilford progeria syndrome. Acro-osteolysis of the distal phalanges, delayed cranial suture closure with wormian bones, linear lucent defects of the metaphyses, and antegonial notching of the mandible are the predominant skeletal features of the disorder. The skeletal features described in 21 other reported cases of acrogeria are summarized.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46786/1/256_2004_Article_BF00350541.pd

    Pheromones and Other Semiochemicals for Monitoring Rare and Endangered Species

    Get PDF
    As global biodiversity declines, biodiversity and conservation have become ever more important research topics. Research in chemical ecology for conservation purposes has not adapted to address this need. During the last 10-15 years, only a few insect pheromones have been developed for biodiversity and conservation studies, including the identification and application of pheromones specifically for population monitoring. These investigations, supplemented with our knowledge from decades of studying pest insects, demonstrate that monitoring with pheromones and other semiochemicals can be applied widely for conservation of rare and threatened insects. Here, I summarize ongoing conservation research, and outline potential applications of chemical ecology and pheromone-based monitoring to studies of insect biodiversity and conservation research. Such applications include monitoring of insect population dynamics and distribution changes, including delineation of current ranges, the tracking of range expansions and contractions, and determination of their underlying causes. Sensitive and selective monitoring systems can further elucidate the importance of insect dispersal and landscape movements for conservation. Pheromone-based monitoring of indicator species will also be useful in identifying biodiversity hotspots, and in characterizing general changes in biodiversity in response to landscape, climatic, or other environmental changes

    Pheromones and Other Semiochemicals for Monitoring Rare and Endangered Species

    Get PDF
    • …
    corecore