1,683 research outputs found

    Characterization of mild whole-body hyperthermia protocols using human breast, ovarian, and colon tumors grown in severe combined immunodeficient mice.

    Get PDF
    OBJECTIVE: We have shown that one treatment of fever-like whole body hyperthermia (WBH) on mice bearing human breast tumors results in a tumor growth delay. Our goal was to repeat this study in mice bearing human ovarian or colon tumors. We further evaluated this WBH protocol by performing multiple and interrupted WBH treatments. METHODS: Human tumors were grown in severe combined immunodeficient (SCID) mice. For WBH, core body temperatures were maintained at 39.8+/-0.2 degrees C for 6-8 hours. Multiple treatments were given 6-7 days apart. Interrupted WBH consisted of three 2-hour heatings, 15 minutes apart. Tumor growth time (TGT) was the number of days to grow 1.5 or 2 times in volume. RESULTS: For WBH-treated ovarian tumors, TGT was 12+/-1.2d, compared with 5.0+/-0.1d for untreated mice (P < 0.05). For colon tumors with one WBH treatment TGT was 4.4+/-1.1d. Two and three treatments had TGTs of 9+/-2.3d and 8+/-1.6d. For the untreated tumors, TGT was 2+/-0.7d (P < 0.01 for one, two, and three treatments). Histological examination indicated that one and two treatments were associated with cellular damage within the tumors. With a slower growing colon tumor, the TGT was 24+/-3.3d with three WBH treatments, compared with 14+/-1.8d for controls (P < 0.01). The TGT of breast tumors treated with interrupted WBH was not significantly different than the noninterrupted, with TGT of 7.3+/-0.8d and 6.2+/-1.0d, respectively. CONCLUSIONS: These data illustrate that WBH causes a tumor growth delay in mice bearing human ovarian and colon tumors. This response is enhanced with a second treatment of WBH. Interrupted and noninterrupted WBH give comparable anti-tumor results. We will continue to evaluate WBH in various animal models to optimize its potential for clinical administration and maximize the anti-tumor response

    Control of Glycolytic Flux by AMPK and p53-Mediated Signaling Pathways in Tumor Cells Adapted to Grow at Low pH

    Get PDF
    Introduction: Tumor cells grow in nutrient and oxygen deprived microenvironments and adapt to the suboptimal growth conditions by altering metabolic pathways. This adaptation process characteristically results in a tumor phenotype that displays anaerobic glycolysis, chronic acidification and aggressive tumor characteristics. Understanding the tumor cell reaction to the microenvironment is a critical factor in predicting the tumor response to hyperthermia. The glucose regulatory molecule, 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase Isoform-3 (PFKFB3), is a bifunctional enzyme central to glycolytic flux and downstream of the metabolic stress sensor AMP-activated protein kinase (AMPK), which has been shown to activate an isoform of Phosphofructokinase (PFK-2). Society for Thermal Medicine Annual Meeting April 23-26, Clearwater Beach, FL

    Control of Glycolytic Flux by AMPK and p53-mediated Signaling Pathways in Tumor Cells Grown at Low pH

    Get PDF
    Introduction: Tumor cells grow in nutrient and oxygen deprived microenvironments and adapt to the suboptimal growth conditions by altering metabolic pathways. This adaptation process characteristically results in a tumor phenotype that displays upregulated Hif-1α anaerobic glycolysis, chronic acidification, reduced rate of overall protein synthesis, lower rate of cell proliferation and aggressive invasive characteristics. Most transplantable tumors exhibit a pHe of 6.7- 7.0; the DB-1 melanoma xenografts used here have a pHe=6.7. Understanding tumor cell reaction to the microenvironment is a critical factor in predicting the tumor response to radiotherapy. The glucose regulatory molecule, 6-Phosphofructo-2-Kinase/Fructose-2,6- Biphosphatase Isoform-3 (PFKFB3), is a bifunctional enzyme central to glycolytic flux and downstream of the metabolic stress sensor AMP-activated protein kinase (AMPK), which we show activates an isoform of phosphofructokinase (PFK-2). Radiation Research Society (RRS) 8th Annual Meeting September 25-29, Maui, H

    Empirical Studies of Evolving Systems

    Get PDF
    This paper describes the results of the working group investigating the issues of empirical studies for evolving systems. The groups found that there were many issues that were central to successful evolution and this concluded that this is a very important area within software engineering. Finally nine main areas were selected for consideration. For each of these areas the central issues were identified as well as success factors. In some cases success stories were also described and the critical factors accounting for the success analysed. In some cases it was later found that a number of areas were so tightly coupled that it was important to discuss them together

    The GAP activity of Msb3p and Msb4p for the Rab GTPase Sec4p is required for efficient exocytosis and actin organization

    Get PDF
    Polarized growth in Saccharomyces cerevisiae is thought to occur by the transport of post-Golgi vesicles along actin cables to the daughter cell, and the subsequent fusion of the vesicles with the plasma membrane. Previously, we have shown that Msb3p and Msb4p genetically interact with Cdc42p and display a GTPase-activating protein (GAP) activity toward a number of Rab GTPases in vitro. We show here that Msb3p and Msb4p regulate exocytosis by functioning as GAPs for Sec4p in vivo. Cells lacking the GAP activity of Msb3p and Msb4p displayed secretory defects, including the accumulation of vesicles of 80–100 nm in diameter. Interestingly, the GAP activity of Msb3p and Msb4p was also required for efficient polarization of the actin patches and for the suppression of the actin-organization defects in cdc42 mutants. Using a strain defective in polarized secretion and actin-patch organization, we showed that a change in actin-patch organization could be a consequence of the fusion of mistargeted vesicles with the plasma membrane

    Generalized Assisted Inflation

    Get PDF
    We obtain a new class of exact cosmological solutions for multi-scalar fields with exponential potentials. We generalize the assisted inflation solutions previously obtained, and demonstrate how they are modified when there exist cross-couplings between the fields, such as occur in supergravity inspired cosmological models.Comment: 5 page

    Cyclin D1 repressor domain mediates proliferation and survival in prostate cancer.

    Get PDF
    Regulation of the androgen receptor (AR) is critical to prostate cancer (PCa) development; therefore, AR is the first line therapeutic target for disseminated tumors. Cell cycle-dependent accumulation of cyclin D1 negatively modulates the transcriptional regulation of AR through discrete, CDK4-independent mechanisms. The transcriptional corepressor function of cyclin D1 resides within a defined motif termed repressor domain (RD), and it was hypothesized that this motif could be utilized as a platform to develop new strategies for blocking AR function. Here, we demonstrate that expression of the RD peptide is sufficient to disrupt AR transcriptional activation of multiple, prostate-specific AR target genes. Importantly, these actions are sufficient to specifically inhibit S-phase progression in AR-positive PCa cells, but not in AR-negative cells or tested AR-positive cells of other lineages. As expected, impaired cell cycle progression resulted in a suppression of cell doubling. Additionally, cell death was observed in AR-positive cells that maintain androgen dependence and in a subset of castrate-resistant PCa cells, dependent on Akt activation status. Lastly, the ability of RD to cooperate with existing hormone therapies was examined, which revealed that RD enhanced the cellular response to an AR antagonist. Together, these data demonstrate that RD is sufficient to disrupt AR-dependent transcriptional and proliferative responses in PCa, and can enhance efficacy of AR antagonists, thus establishing the impetus for development of RD-based mimetics

    Chaotic Friedmann-Robertson-Walker Cosmology

    Get PDF
    We show that the dynamics of a spatially closed Friedmann - Robertson - Walker Universe conformally coupled to a real, free, massive scalar field, is chaotic, for large enough field amplitudes. We do so by proving that this system is integrable under the adiabatic approximation, but that the corresponding KAM tori break up when non adiabatic terms are considered. This finding is confirmed by numerical evaluation of the Lyapunov exponents associated with the system, among other criteria. Chaos sets strong limitations to our ability to predict the value of the field at the Big Crunch, from its given value at the Big Bang. (Figures available on request)Comment: 28 pages, 11 figure

    Dust-filled axially symmetric universes with a cosmological constant

    Get PDF
    Following the recent recognition of a positive value for the vacuum energy density and the realization that a simple Kantowski-Sachs model might fit the classical tests of cosmology, we study the qualitative behavior of three anisotropic and homogeneous models: Kantowski-Sachs, Bianchi type-I and Bianchi type-III universes, with dust and a cosmological constant, in order to find out which are physically permitted. We find that these models undergo isotropization up to the point that the observations will not be able to distinguish between them and the standard model, except for the Kantowski-Sachs model (Ωk00)(\Omega_{k_{0}}0) with ΩΛ0\Omega_{\Lambda_{0}} smaller than some critical value ΩΛM\Omega_{\Lambda_{M}}. Even if one imposes that the Universe should be nearly isotropic since the last scattering epoch (z≈1000z\approx 1000), meaning that the Universe should have approximately the same Hubble parameter in all directions (considering the COBE 4-Year data), there is still a large range for the matter density parameter compatible with Kantowsky-Sachs and Bianchi type-III if ∣Ω0+ΩΛ0−1∣≤δ|\Omega_0+\Omega_{\Lambda_0}-1|\leq \delta, for a very small δ\delta . The Bianchi type-I model becomes exactly isotropic owing to our restrictions and we have Ω0+ΩΛ0=1\Omega_0+\Omega_{\Lambda_0}=1 in this case. Of course, all these models approach locally an exponential expanding state provided the cosmological constant ΩΛ>ΩΛM\Omega_\Lambda>\Omega_{\Lambda_{M}}.Comment: 12 pages, 9 figures, 1 table. Published in Physical Review D 1
    • …
    corecore