257 research outputs found

    Cambogin Is Preferentially Cytotoxic to Cells Expressing PDGFR

    Get PDF
    Platelet-derived growth factor receptors (PDGFRs) have been implicated in a wide array of human malignancies, including medulloblastoma (MB), the most common brain tumor of childhood. Although significant progress in MB biology and therapeutics has been achieved during the past decades, MB remains a horrible challenge to the physicians and researchers. Therefore, novel inhibitors targeting PDGFR signaling pathway may offer great promise for the treatment of MB. In the present study, we investigated the cytotoxicity and mechanisms of cambogin in Daoy MB cells. Our results show that cambogin triggers significant S phase cell cycle arrest and apoptosis via down regulation of cyclin A and E, and activation of caspases. More importantly, further mechanistic studies demonstrated that cambogin inhibits PDGFR signaling in Daoy and genetically defined mouse embryo fibroblast (MEF) cell lines. These results suggest that cambogin is preferentially cytotoxic to cells expressing PDGFR. Our findings may provide a novel approach by targeting PDGFR signaling against MB

    Crystal Structures of ABL-Related Gene (ABL2) in Complex with Imatinib, Tozasertib (VX-680), and a Type I Inhibitor of the Triazole Carbothioamide Class†

    Get PDF
    ABL2 (also known as ARG (ABL related gene)) is closely related to the well-studied Abelson kinase cABL. ABL2 is involved in human neoplastic diseases and is deregulated in solid tumors. Oncogenic gene translocations occur in acute leukemia. So far no structural information for ABL2 has been reported. To elucidate structural determinants for inhibitor interaction, we determined the cocrystal structure of ABL2 with the oncology drug imatinib. Interestingly, imatinib not only interacted with the ATP binding site of the inactive kinase but was also bound to the regulatory myristate binding site. This structure may therefore serve as a tool for the development of allosteric ABL inhibitors. In addition, we determined the structures of ABL2 in complex with VX-680 and with an ATP-mimetic type I inhibitor, which revealed an interesting position of the DFG motif intermediate between active and inactive conformations, that may also serve as a template for future inhibitor design

    Molecular measurement of BCR-ABL transcript variations in chronic myeloid leukemia patients in cytogenetic remission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The monitoring of <it>BCR-ABL </it>transcript levels by real-time quantitative polymerase chain reaction (RT-qPCR) has become important to assess minimal residual disease (MRD) and standard of care in the treatment of chronic myeloid leukemia (CML). In this study, we performed a prospective, sequential analysis using RT-qPCR monitoring of <it>BCR-ABL </it>gene rearrangements in blood samples from 91 CML patients in chronic phase (CP) who achieved complete cytogenetic remission (CCyR) and major molecular remission (MMR) throughout imatinib treatment.</p> <p>Methods</p> <p>The absolute level of <it>BCR-ABL </it>transcript from peripheral blood was serially measured every 4 to 12 weeks by RT-qPCR. Only level variations > 0.5%, according to the international scale, was considered positive. Sequential cytogenetic analysis was also performed in bone marrow samples from all patients using standard protocols.</p> <p>Results</p> <p>Based on sequential analysis of <it>BCR-ABL </it>transcripts, the 91 patients were divided into three categories: (A) 57 (62.6%) had no variation on sequential analysis; (B) 30 (32.9%) had a single positive variation result obtained in a single sample; and (C) 4 (4.39%) had variations of <it>BCR-ABL </it>transcripts in at least two consecutive samples. Of the 34 patients who had elevated levels of transcripts (group B and C), 19 (55.8%) had a < 1% of <it>BCR-ABL/BCR </it>ratio, 13 (38.2%) patients had a 1% to 10% increase and 2 patients had a >10% increase of RT-qPCR. The last two patients had lost a CCyR, and none of them showed mutations in the <it>ABL </it>gene. Transient cytogenetic alterations in Ph-negative cells were observed in five (5.5%) patients, and none of whom lost CCyR.</p> <p>Conclusions</p> <p>Despite an increase levels of <it>BCR-ABL/BCR </it>ratio variations by RT-qPCR, the majority of CML patients with MMR remained in CCyR. Thus, such single variations should neither be considered predictive of subsequent failure and nor an indication for altering imatinib dose or switching to second generation therapy. Changing of imatinib on the basis of <it>BCR-ABL/BCR</it>% sustained increase and mutational studies is a prudent approach for preserving other therapeutic options in imatinib-resistant patients.</p

    VEGF165-induced vascular permeability requires NRP1 for ABL-mediated SRC family kinase activation.

    Get PDF
    The vascular endothelial growth factor (VEGF) isoform VEGF165 stimulates vascular growth and hyperpermeability. Whereas blood vessel growth is essential to sustain organ health, chronic hyperpermeability causes damaging tissue edema. By combining in vivo and tissue culture models, we show here that VEGF165-induced vascular leakage requires both VEGFR2 and NRP1, including the VEGF164-binding site of NRP1 and the NRP1 cytoplasmic domain (NCD), but not the known NCD interactor GIPC1. In the VEGF165-bound receptor complex, the NCD promotes ABL kinase activation, which in turn is required to activate VEGFR2-recruited SRC family kinases (SFKs). These results elucidate the receptor complex and signaling hierarchy of downstream kinases that transduce the permeability response to VEGF165. In a mouse model with choroidal neovascularisation akin to age-related macular degeneration, NCD loss attenuated vessel leakage without affecting neovascularisation. These findings raise the possibility that targeting NRP1 or its NCD interactors may be a useful therapeutic strategy in neovascular disease to reduce VEGF165-induced edema without compromising vessel growth

    Icaritin Shows Potent Anti-Leukemia Activity on Chronic Myeloid Leukemia In Vitro and In Vivo by Regulating MAPK/ERK/JNK and JAK2/STAT3 /AKT Signalings

    Get PDF
    PURPOSE: To explore the effects of Icaritin on chronic myeloid leukemia (CML) cells and underlying mechanisms. METHOD: CML cells were incubated with various concentration of Icaritin for 48 hours, the cell proliferation was analyzed by MTT and the apoptosis was assessed with Annexin V and Hoechst 33258 staining. Cell hemoglobinization was determined. Western blotting was used to evaluate the expressions of MAPK/ERK/JNK signal pathway and Jak-2/Phorpho-Stat3/Phorsph-Akt network-related protein. NOD-SCID nude mice were applied to demonstrate the anti-leukemia effect of Icaritin in vivo. RESULTS: Icaritin potently inhibited proliferation of K562 cells (IC50 was 8 µM) and primary CML cells (IC50 was 13.4 µM for CML-CP and 18 µM for CML-BC), induced CML cells apoptosis and promoted the erythroid differentiation of K562 cells with time-dependent manner. Furthermore, Icaritin was able to suppress the growth of primary CD34+ leukemia cells (CML) and Imatinib-resistant cells, and to induce apoptosis. In mouse leukemia model, Icaritin could prolong lifespan of NOD-SCID nude mice inoculated with K562 cells as effective as Imatinib without suppression of bone marrow. Icaritin could up-regulate phospho-JNK or phospho-C-Jun and down-regulate phospho-ERK, phospho-P-38, Jak-2, phospho-Stat3 and phospho-Akt expression with dose- or time-dependent manner. Icaritin had no influence both on c-Abl and phospho-c-Abl protein expression and mRNA levels of Bcr/Abl. CONCLUSION: Icaritin from Chinese herb medicine may be a potential anti-CML agent with low adverse effect. The mechanism of anti-leukemia for Icaritin is involved in the regulation of Bcr/Abl downstream signaling. Icaritin may be useful for an alternative therapeutic choice of Imatinib-resistant forms of CML
    corecore