2,968 research outputs found

    Steady-state thermodynamics of non-interacting transport beyond weak coupling

    Full text link
    We investigate the thermodynamics of simple (non-interacting) transport models beyond the scope of weak coupling. For a single fermionic or bosonic level -- tunnel-coupled to two reservoirs -- exact expressions for the stationary matter and energy current are derived from the solutions of the Heisenberg equations of motion. The positivity of the steady-state entropy production rate is demonstrated explicitly. Finally, for a configuration in which particles are pumped upwards in chemical potential by a downward temperature gradient, we demonstrate that the thermodynamic efficiency of this process decreases when the coupling strength between system and reservoirs is increased, as a direct consequence of the loss of a tight coupling between energy and matter currents.Comment: 6 pages, 2 figures, to appear in EP

    The development of precipitation-hardened chromium-base alloys Final report

    Get PDF
    Precipitation with refractory metal carbides for creep resistant chromium-base alloy

    Noise enhancement due to quantum coherence in coupled quantum dots

    Get PDF
    We show that the intriguing observation of noise enhancement in the charge transport through two vertically coupled quantum dots can be explained by the interplay of quantum coherence and strong Coulomb blockade. We demonstrate that this novel mechanism for super-Poissonian charge transfer is very sensitive to decoherence caused by electron-phonon scattering as inferred from the measured temperature dependence.Comment: 4 pages, 3 figures, corrected version (Figs.2 and 3

    Atrial high-rate episodes: prevalence, stroke risk, implications for management, and clinical gaps in evidence

    Get PDF
    Self-terminating atrial arrhythmias are commonly detected on continuous rhythm monitoring, e.g. by pacemakers or defibrillators. It is unclear whether the presence of these arrhythmias has therapeutic consequences. We sought to summarize evidence on the prevalence of atrial high-rate episodes (AHREs) and their impact on risk of stroke. We performed a comprehensive, tabulated review of published literature on the prevalence of AHRE. In patients with AHRE, but without atrial fibrillation (AF), we reviewed the stroke risk and the potential risk/benefit of oral anticoagulation. Atrial high-rate episodes are found in 10-30% of AF-free patients. Presence of AHRE slightly increases stroke risk (0.8% to 1%/year) compared with patients without AHRE. Atrial high-rate episode of longer duration (e.g. those >24 h) could be associated with a higher stroke risk. Oral anticoagulation has the potential to reduce stroke risk in patients with AHRE but is associated with a rate of major bleeding of 2%/year. Oral anticoagulation is not effective in patients with heart failure or survivors of a stroke without AF. It remains unclear whether anticoagulation is effective and safe in patients with AHRE. Atrial high-rate episodes are common and confer a slight increase in stroke risk. There is true equipoise on the best way to reduce stroke risk in patients with AHRE. Two ongoing trials (NOAH-AFNET 6 and ARTESiA) will provide much-needed information on the effectiveness and safety of oral anticoagulation using non-vitamin K antagonist oral anticoagulants in patients with AHRE.info:eu-repo/semantics/publishedVersio

    Advanced control with a Cooper-pair box: stimulated Raman adiabatic passage and Fock-state generation in a nanomechanical resonator

    Full text link
    The rapid experimental progress in the field of superconducting nanocircuits gives rise to an increasing quest for advanced quantum-control techniques for these macroscopically coherent systems. Here we demonstrate theoretically that stimulated Raman adiabatic passage (STIRAP) should be possible with the quantronium setup of a Cooper-pair box. The scheme appears to be robust against decoherence and should be realizable even with the existing technology. As an application we present a method to generate single-phonon states of a nanomechnical resonator by vacuum-stimulated adiabatic passage with the superconducting nanocircuit coupled to the resonator

    Current Switch by Coherent Trapping of Electrons in Quantum Dots

    Full text link
    We propose a new transport mechanism through tunnel-coupled quantum dots based on the coherent population trapping effect. Coupling to an excited level by the coherent radiation of two microwaves can lead to an extremely narrow current antiresonance. The effect can be used to determine interdot dephasing rates and is a mechanism for a very sensitive, optically controlled current switch.Comment: to appear in Phys. Rev. Let

    Current noise of a quantum dot p-i-n junction in a photonic crystal

    Full text link
    The shot-noise spectrum of a quantum dot p-i-n junction embedded inside a three-dimensional photonic crystal is investigated. Radiative decay properties of quantum dot excitons can be obtained from the observation of the current noise. The characteristic of the photonic band gap is revealed in the current noise with discontinuous behavior. Applications of such a device in entanglement generation and emission of single photons are pointed out, and may be achieved with current technologies.Comment: 4 pages, 3 figures, to appear in Phys. Rev. B (2005
    • …
    corecore