20 research outputs found

    Protein loop compaction and the origin of the effect of arginine and glutamic acid mixtures on solubility, stability and transient oligomerization of proteins

    Get PDF
    Addition of a 50 mM mixture of l-arginine and l-glutamic acid (RE) is extensively used to improve protein solubility and stability, although the origin of the effect is not well understood. We present Small Angle X-ray Scattering (SAXS) and Nuclear Magnetic Resonance (NMR) results showing that RE induces protein compaction by collapsing flexible loops on the protein core. This is suggested to be a general mechanism preventing aggregation and improving resistance to proteases and to originate from the polyelectrolyte nature of RE. Molecular polyelectrolyte mixtures are expected to display long range correlation effects according to dressed interaction site theory. We hypothesize that perturbation of the RE solution by dissolved proteins is proportional to the volume occupied by the protein. As a consequence, loop collapse, minimizing the effective protein volume, is favored in the presence of RE

    Sequence-Specific Binding of Recombinant Zbed4 to DNA: Insights into Zbed4 Participation in Gene Transcription and Its Association with Other Proteins

    Get PDF
    Zbed4, a member of the BED subclass of Zinc-finger proteins, is expressed in cone photoreceptors and glial Müller cells of human retina whereas it is only present in Müller cells of mouse retina. To characterize structural and functional properties of Zbed4, enough amounts of purified protein were needed. Thus, recombinant Zbed4 was expressed in E. coli and its refolding conditions optimized for the production of homogenous and functionally active protein. Zbed4’s secondary structure, determined by circular dichroism spectroscopy, showed that this protein contains 32% α-helices, 18% β-sheets, 20% turns and 30% unordered structures. CASTing was used to identify the target sites of Zbed4 in DNA. The majority of the DNA fragments obtained contained poly-Gs and some of them had, in addition, the core signature of GC boxes; a few clones had only GC-boxes. With electrophoretic mobility shift assays we demonstrated that Zbed4 binds both not only to DNA and but also to RNA oligonucleotides with very high affinity, interacting with poly-G tracts that have a minimum of 5 Gs; its binding to and GC-box consensus sequences. However, the latter binding depends on the GC-box flanking nucleotides. We also found that Zbed4 interacts in Y79 retinoblastoma cells with nuclear and cytoplasmic proteins Scaffold Attachment Factor B1 (SAFB1), estrogen receptor alpha (ERα), and cellular myosin 9 (MYH9), as shown with immunoprecipitation and mass spectrometry studies as well as gel overlay assays. In addition, immunostaining corroborated the co-localization of Zbed4 with these proteins. Most importantly, in vitro experiments using constructs containing promoters of genes directing expression of the luciferase gene, showed that Zbed4 transactivates the transcription of those promoters with poly-G tracts
    corecore