1,264 research outputs found

    An XMM-Newton look at the strongly variable radio-weak BL Lac Fermi J1544-0639

    Full text link
    Fermi J1544-0639/ASASSN-17gs/AT2017egv was identified as a gamma-ray/optical transient on May 15, 2017. Subsequent multiwavelength observations suggest that this source may belong to the new class of radio-weak BL Lacs. We studied the X-ray spectral properties and short-term variability of Fermi J1544-0639 to constrain the X-ray continuum emission mechanism of this peculiar source. We present the analysis of an XMM-Newton observation, 56 ks in length, performed on February 21, 2018. The source exhibits strong X-ray variability, both in flux and spectral shape, on timescales of ~10 ks, with a harder-when-brighter behaviour typical of BL Lacs. The X-ray spectrum is nicely described by a variable broken power law, with a break energy of around 2.7 keV consistent with radiative cooling due to Comptonization of broad-line region photons. We find evidence for a `soft excess', nicely described by a blackbody with a temperature of ~0.2 keV, consistent with being produced by bulk Comptonization along the jet.Comment: 11 pages, 12 figures. Accepted for publication in Astronomy & Astrophysic

    Bright X-ray bursts from 1E 1724-3045 in Terzan 2

    Get PDF
    During about 3 years wide field monitoring of the Galactic Center region by the WFC telescopes on board the BeppoSAX satellite, a total of 14 type-I X-ray bursts were detected from the burster 1E 1724-3045 located in the globular cluster Terzan 2. All the observed events showed evidence for photospheric radius expansion due to Eddington-limit burst luminosity, thus leading to an estimate of the source distance (~7.2 kpc). Preliminary results of the analysis of the bursts are presented.Comment: 5 pages, 2 figures, Proc. 5th Compton Symp., Portsmouth 199

    Exploring perinatal asphyxia by metabolomics

    Get PDF
    Brain damage related to perinatal asphyxia is the second cause of neuro-disability worldwide. Its incidence was estimated in 2010 as 8.5 cases per 1000 live births worldwide, with no further recent improvement even in more industrialized countries. If so, hypoxic-ischemic encephalopathy is still an issue of global health concern. It is thought that a consistent number of cases may be avoided, and its sequelae may be preventable by a prompt and efficient physical and therapeutic treatment. The lack of early, reliable, and specific biomarkers has up to now hampered a more effective use of hypothermia, which represents the only validated therapy for this condition. The urge to unravel the biological modifications underlying perinatal asphyxia and hypoxic-ischemic encephalopathy needs new diagnostic and therapeutic tools. Metabolomics for its own features is a powerful approach that may help for the identification of specific metabolic profiles related to the pathological mechanism and foreseeable outcome. The metabolomic profiles of animal and human infants exposed to perinatal asphyxia or developing hypoxic-ischemic encephalopathy have so far been investigated by means of 1H nuclear magnetic resonance spectroscopy and mass spectrometry coupled with gas or liquid chromatography, leading to the identification of promising metabolomic signatures. In this work, an extensive review of the relevant literature was performed

    New insights on accretion in Supergiant Fast X-ray Transients from XMM-Newton and INTEGRAL observations of IGR J17544−-2619

    Full text link
    XMM-Newton observations of the supergiant fast X-ray transient IGR ~J17544−-2619 are reported and placed in the context of an analysis of archival INTEGRAL/IBIS data that provides a refined estimate of the orbital period at 4.9272±\pm0.0004 days. A complete outburst history across the INTEGRAL mission is reported. Although the new XMM-Newton observations (each lasting ∌\sim15 ks) targeted the peak flux in the phase-folded hard X-ray light curve of IGR ~J17544−-2619, no bright outbursts were observed, the source spending the majority of the exposure at intermediate luminosities of the order of several 1033 ^{33}\,erg \,s−1^{-1} (0.5 − \,-\,10 \,keV) and displaying only low level flickering activity. For the final portion of the exposure, the luminosity of IGR ~J17544−-2619 dropped to ∌\sim4×\times1032 ^{32}\,erg \,s−1^{-1} (0.5 - 10 keV), comparable with the lowest luminosities ever detected from this source, despite the observations being taken near to periastron. We consider the possible orbital geometry of IGR ~J17544−-2619 and the implications for the nature of the mass transfer and accretion mechanisms for both IGR ~J17544−-2619 and the SFXT population. We conclude that accretion under the `quasi-spherical accretion' model provides a good description of the behaviour of IGR ~J17544−-2619, and suggest an additional mechanism for generating outbursts based upon the mass accumulation rate in the hot shell (atmosphere) that forms around the NS under the quasi-spherical formulation. Hence we hope to aid in explaining the varied outburst behaviours observed across the SFXT population with a consistent underlying physical model.Comment: 12 pages, 5 figures, accepted for publication in MNRA

    Burst-properties as a function of mass accretion rate in GX 3+1

    Get PDF
    GX 3+1 is a low-mass X-ray binary that is persistently bright since its discovery in 1964. It was found to be an X-ray burster twenty years ago proving that the compact object in this system is a neutron star. The burst rate is so low that only 18 bursts were reported prior to 1996. The Wide Field Cameras on BeppoSAX have, through a dedicated monitoring program on the Galactic center region, increased the number of X-ray bursts from GX 3+1 by 61. Since GX 3+1 exhibits a slow (order of years) modulation in the persistent flux of about 50%, these observations opens up the unique possibility to study burst properties as a function of mass accretion rate for very low burst rates. This is the first time that bursts are detected from GX 3+1 in the high state. From the analysis we learn that all bursts are short with e-folding decay times smaller than 10 s. Therefore, all bursts are due to unstable helium burning. Furthermore, the burst rate drops sixfold in a fairly narrow range of 2-20 keV flux; we discuss possible origins for this.Comment: 9 pages and 7 figures. Accepted for publication in Astronomy & Astrophysic

    Accurate classification of 75 counterparts of objects detected in the 54 month Palermo Swift/BAT hard X-ray catalogue

    Full text link
    Through an optical campaign performed at 4 telescopes located in the northern and the southern hemispheres, we have obtained optical spectroscopy for 75 counterparts of unclassified or poorly studied hard X-ray emitting objects detected with Swift/BAT and listed in the 54 month Palermo BAT catalogue. All these objects have also observations taken with Swift/XRT, ROSAT or Chandra satellites which allowed us to reduce the high energy error box and pinpoint the most likely optical counterpart/s. We find that 69 sources in our sample are Active Galactic Nuclei (AGNs); of them, 35 are classified as type 1 (with broad and narrow emission lines), 33 are classified as type 2 (with only narrow emission lines) and one is an high redshift QSO; the remaining 6 objects are galactic cataclysmic variables (CVs). Among type 1 AGNs, 32 are objects of intermediate Seyfert type (1.2-1.9) and one is Narrow Line Seyfert 1 galaxy; for 29 out of 35 type 1 AGNs, we have been able to estimate the central black hole mass and the Eddington ratio. Among type 2 AGNs, two display optical features typical of the LINER class, 3 are classified as transition objects, 1 is a starburst galaxy and 2 are instead X-ray bright, optically normal galaxies. All galaxies classified in this work are relatively nearby objects (0.006 - 0.213) except for one at redshift 1.137.Comment: 19 pages, 5 figures, 6 tables, accepted for publications on Astronomy and Astrophysics, main journal. arXiv admin note: text overlap with arXiv:1206.509

    Serum protein electrophoresis pro le during late pregnancy and early post partum period in mares

    Get PDF
    The aim of the study was to determine how the physiological adjustments occurring during late pregnancy and the early post partum period affect mares’ serum protein profile. Ten pregnant mares (Group A) were monitored from the 34th week of pregnancy until the 3rd week after foaling, ten nonpregnant mares (Group B) were used as the control. Blood samples were collected every 3 weeks, from -16 to -4 weeks preceding parturition, and then every week until the 3rd week after foaling. Additional blood samples were taken within 24±12 h from foaling. The statistical analysis revealed a significant increase in albumin and α2-globulin concentrations obtained from Group A during the experimental period. Dunnet’s test also revealed significantly higher concentrations of α1-globulins, α2-globulins and Îł-globulins in group A than in group B. The following results showed that the serum proteins differed in periparturient mares when compared to non-pregnant mares and significant changes in some protein fractions occurred over the experimental period. Focusing on the peripartum period, our study provides specific information about mare’s serum protein profile that could help equine practitioners to better interpret clinical data and promptly diagnose pathological conditions that might compromise the health status of the mare and, as consequence, also her foal
    • 

    corecore