3 research outputs found

    Coulomb Glasses: A Comparison Between Mean Field and Monte Carlo Results

    Full text link
    Recently a local mean field theory for both eqilibrium and transport properties of the Coulomb glass was proposed [A. Amir et al., Phys. Rev. B 77, 165207 (2008); 80, 245214 (2009)]. We compare the predictions of this theory to the results of dynamic Monte Carlo simulations. In a thermal equilibrium state we compare the density of states and the occupation probabilities. We also study the transition rates between different states and find that the mean field rates underestimate a certain class of important transitions. We propose modified rates to be used in the mean field approach which take into account correlations at the minimal level in the sense that transitions are only to take place from an occupied to an empty site. We show that this modification accounts for most of the difference between the mean field and Monte Carlo rates. The linear response conductance is shown to exhibit the Efros-Shklovskii behaviour in both the mean field and Monte Carlo approaches, but the mean field method strongly underestimates the current at low temperatures. When using the modified rates better agreement is achieved

    Driving a low critical current Josephson junction array with a mode-locked laser

    No full text
    We report proof-of-concept experiments on an optically driven Josephson voltage standard based on a mode-locked laser (MLL), a time-division multiplexer, and a cryogenic ultrafast photodiode driving an overdamped Josephson junction array (JJA). Our optical pulse pattern generator (PPG) concept builds on the capability of MLLs to produce trains of picosecond-wide optical pulses with little amplitude and temporal spread. Our present setup enables multiplication of the original 2.3 GHz pulse repetition frequency by a factor of 8. A commercial photodiode converts the optical pulses into about 25 ps wide electrical pulses in liquid helium several cm from the JJA. Using a custom-made MLL, we can drive a JJA with a low critical current of 360 μA at multiple Shapiro steps. We have performed experiments with pulse pairs whose time interval can be set freely without distorting the shapes of individual pulses. Experimental results are in qualitative agreement with theoretical simulations, and they demonstrate, e.g., crossover in the Shapiro step pattern when the time interval between the pulses is approximately equal to the inverse of the characteristic frequency of the JJA. However, there are quantitative discrepancies, which motivate an improved integration of photodiodes and JJAs to improve both the understanding and fidelity of Josephson Arbitrary Waveform Synthesizers. Considering future quantum technologies in a wider perspective, our optical approach is a potential enabler for fast and energy-efficient pulse drive without an expensive high-bandwidth electrical PPG and without high-bandwidth electrical cables that yield too high thermal conductance between cryogenic and room temperatures
    corecore