8,879 research outputs found

    Radar response from vegetation with nodal structure

    Get PDF
    Radar images from the SEASAT synthetic aperture radar (SAR) produced unusually high returns from corn and sorghum fields, which seem to indicate a correlation between nodal separation in the stalk and the wavelength of the radar. These images also show no difference in return from standing or harvested corn. Further investigation using images from the Shuttle Imaging Radar (SIR-A) substantiated these observations and showed a degradation of the high return with time after harvest. From portions of corn and sweet sorghum stalks that were sampled to measure stalk water content, it was determined that near and after maturity the water becomes more concentrated in the stalk nodes. The stalk then becomes a linear sequence of alternating dielectrics as opposed to a long slender cylinder with uniform dielectric properties

    Expectation-driven interaction: a model based on Luhmann's contingency approach

    Full text link
    We introduce an agent-based model of interaction, drawing on the contingency approach from Luhmann's theory of social systems. The agent interactions are defined by the exchange of distinct messages. Message selection is based on the history of the interaction and developed within the confines of the problem of double contingency. We examine interaction strategies in the light of the message-exchange description using analytical and computational methods.Comment: 37 pages, 16 Figures, to appear in Journal of Artificial Societies and Social Simulation

    Multispectral determination of soil moisture

    Get PDF
    The edited Guymon soil moisture data collected on August 2, 5, 14, 17, 1978 were grouped into four field cover types for statistical analysis. These are the bare, milo with rows parallel to field of view, milo with rows perpendicular to field of view and alfalfa cover groups. There are 37, 22, 24 and 14 observations respectively in each group for each sensor channel and each soil moisture layer. A subset of these data called the 'five cover set' (VEG5) limited the scatterometer data to the 15 deg look angle and was used to determine discriminant functions and combined group regressions

    Towards the origin of the radio emission in AR Sco, the first radio-pulsing white dwarf binary

    Full text link
    The binary system AR Sco contains an M star and the only known radio-pulsing white dwarf. The system shows emission from radio to X-rays, likely dominated by synchrotron radiation. The mechanism that produces most of this emission remains unclear. Two competing scenarios have been proposed: Collimated outflows, and direct interaction between the magnetospheres of the white dwarf and the M star. The two proposed scenarios can be tested via very long baseline interferometric radio observations. We conducted a radio observation with the Australian Long Baseline Array (LBA) on 20 Oct 2016 at 8.5 GHz to study the compactness of the radio emission. Simultaneous data with the Australian Telescope Compact Array (ATCA) were also recorded for a direct comparison of the obtained flux densities. AR Sco shows radio emission compact on milliarcsecond angular scales (0.02 AU\lesssim 0.02\ \mathrm{AU}, or $4\ \mathrm{R_{\odot}}).Theemissionisorbitallymodulated,withanaveragefluxdensityof). The emission is orbitally modulated, with an average flux density of \approx 6.5\ \mathrm{mJy}$. A comparison with the simultaneous ATCA data shows that no flux is resolved out on mas scales, implying that the radio emission is produced in this compact region. Additionally, the obtained radio light curves on hour timescales are consistent with the optical light curve. The radio emission in AR Sco is likely produced in the magnetosphere of the M star or the white dwarf, and we see no evidence for a radio outflow or collimated jets significantly contributing to the radio emission.Comment: 4 pages, 2 figures, accepted for publication in A&

    Nonstationary Teleconnection Between the Pacific Ocean and Arctic Sea Ice

    Get PDF
    Over the last 40 years observations show a teleconnection between summertime Pacific Ocean sea surface temperatures and September Arctic sea ice extent. However, the short satellite observation record has made it difficult to further examine this relationship. Here, we use 30 fully coupled general circulation models (GCMs) participating in Phase 5 of the Coupled Model Intercomparison Project to assess the ability of GCMs to simulate this teleconnection and analyze its stationarity over longer timescales. GCMs can temporarily simulate the teleconnection in continuous 40‐year segments but not over longer, centennial timescales. Each GCM exhibits considerable teleconnection variability on multidecadal timescales. Further analysis shows that the teleconnection depends on an equally nonstationary atmospheric bridge from the subequatorial Pacific Ocean to the upper Arctic troposphere. These findings indicate that the modulation of Arctic sea ice loss by subequatorial Pacific Ocean variability is not fixed in time, undermining the assumption of teleconnection stationarity as defined by the satellite record

    Nonstationary Teleconnection Between the Pacific Ocean and Arctic Sea Ice

    Get PDF
    Over the last 40 years observations show a teleconnection between summertime Pacific Ocean sea surface temperatures and September Arctic sea ice extent. However, the short satellite observation record has made it difficult to further examine this relationship. Here, we use 30 fully coupled general circulation models (GCMs) participating in Phase 5 of the Coupled Model Intercomparison Project to assess the ability of GCMs to simulate this teleconnection and analyze its stationarity over longer timescales. GCMs can temporarily simulate the teleconnection in continuous 40‐year segments but not over longer, centennial timescales. Each GCM exhibits considerable teleconnection variability on multidecadal timescales. Further analysis shows that the teleconnection depends on an equally nonstationary atmospheric bridge from the subequatorial Pacific Ocean to the upper Arctic troposphere. These findings indicate that the modulation of Arctic sea ice loss by subequatorial Pacific Ocean variability is not fixed in time, undermining the assumption of teleconnection stationarity as defined by the satellite record

    Meteor ablation spheres from deep-sea sediments

    Get PDF
    Spheres from mid-Pacific abyssal clays (0 to 500,000 yrs old), formed from particles that completely melted and subsequently recrystallized as they separated from their meteoroid bodies, or containing relict grains of parent meteoroids that did not experience any melting were analyzed. The spheres were readily divided into three groups using their dominant mineralogy. The Fe-rich spheres were produced during ablation of Fe and metal-rich silicate meteoroids. The glassy spheres are considerably more Fe-rich than the silicate spheres. They consist of magnetite and an Fe glass which is relatively low in Si. Bulk compositions and relict grains are useful for determining the parent meteoroid types for the silicate spheres. Bulk analyses of recrystallized spheres show that nonvolatile elemental abundances are similar to chondrite abundances. Analysis of relict grains identified high temperature minerals associated with a fine-grained, low temperature, volatile-rich matrix. The obvious candidates for parent meteoroids of this type of silicate sphere is a carbonaceous chondrite

    Cosmological Cosmic Rays and the observed Li6 plateau in metal poor halo stars

    Full text link
    Very recent observations of the Li6 isotope in halo stars reveal a Li6 plateau about 1000 times above the predicted BBN abundance. We calculate the evolution of Li6 versus redshift generated from an initial burst of cosmological cosmic rays (CCRs) up to the formation of the Galaxy. We show that the pregalactic production of the Li6 isotope can account for the Li6 plateau observed in metal poor halo stars without additional over-production of Li7. The derived relation between the amplitude of the CCR energy spectra and the redshift of the initial CCR production puts constraints on the physics and history of the objects, such as pop III stars, responsible for these early cosmic rays. Consequently, we consider the evolution of Li6 in the Galaxy. Since Li6 is also produced in Galactic cosmic ray nucleosynthesis, we argue that halo stars with metallicities between [Fe/H] = -2 and -1, must be somewhat depleted in Li6.Comment: 8 pages, 6 figures, version accepted for publication in Ap

    A Way Out of the Quantum Trap

    Get PDF
    We review Event Enhanced Quantum Theory (EEQT). In Section 1 we address the question "Is Quantum Theory the Last Word". In particular we respond to some of recent challenging staments of H.P. Stapp. We also discuss a possible future of the quantum paradigm - see also Section 5. In Section 2 we give a short sketch of EEQT. Examples are given in Section 3. Section 3.3 discusses a completely new phenomenon - chaos and fractal-like phenomena caused by a simultaneous "measurement" of several non-commuting observables (we include picture of Barnsley's IFS on unit sphere of a Hilbert space). In Section 4 we answer "Frequently Asked Questions" concerning EEQT.Comment: Replacement. Corrected affiliation. Latex, one .jpg figure. To appear in Proc. Conf. Relativistic Quantum Measurements, Napoli 1998, Ed. F. Petruccion

    Operator normalized quantum arrival times in the presence of interactions

    Full text link
    We model ideal arrival-time measurements for free quantum particles and for particles subject to an external interaction by means of a narrow and weak absorbing potential. This approach is related to the operational approach of measuring the first photon emitted from a two-level atom illuminated by a laser. By operator-normalizing the resulting time-of-arrival distribution, a distribution is obtained which for freely moving particles not only recovers the axiomatically derived distribution of Kijowski for states with purely positive momenta but is also applicable to general momentum components. For particles interacting with a square barrier the mean arrival time and corresponding ``tunneling time'' obtained at the transmission side of the barrier becomes independent of the barrier width (Hartman effect) for arbitrarily wide barriers, i.e., without the transition to the ultra-opaque, classical-like regime dominated by wave packet components above the barrier.Comment: 10 pages, 5 figures, RevTe
    corecore