94 research outputs found

    Smarr's formula for black holes with non-linear electrodynamics

    Full text link
    It is known that for nonlinear electrodynamics the First Law of Black Hole Mechanics holds, however the Smarr's formula for the total mass does not. In this contribution we discuss the point and determine the corresponding expressions for the Bardeen black hole solution that represents a nonlinear magnetic monopole. The same is done for the regular black hole solution derived by Ayon-Beato and Garcia, showing that in the case that variations of the electric charge are involved, the Smarr's formula does not longer is valid.Comment: 10 pages, 3 figures.Contribution to the Festscrift of Prof. A. Garci

    Scalar Fields Nonminimally Coupled to pp Waves

    Get PDF
    Here, we report pp waves configurations of three-dimensional gravity for which a scalar field nonminimally coupled to them acts as a source. In absence of self-interaction the solutions are gravitational plane waves with a profile fixed in terms of the scalar wave. In the self-interacting case, only power-law potentials parameterized by the nonminimal coupling constant are allowed by the field equations. In contrast with the free case the self-interacting scalar field does not behave like a wave since it depends only on the wave-front coordinate. We address the same problem when gravitation is governed by topologically massive gravity and the source is a free scalar field. From the pp waves derived in this case, we obtain at the zero topological mass limit, new pp wave solutions of conformal gravity for any arbitrary value of the nonminimal coupling parameter. Finally, we extend these solutions to the self-interacting case of conformal gravity.Comment: 14 pages, RevTeX. Minor changes. To appear in Phys. Rev.

    Higher-dimensional AdS waves and pp-waves with conformally related sources

    Get PDF
    AdS waves and pp-waves can only be supported by pure radiation fields, for which the only nonvanishing component of the energy-momentum tensor is the energy density along the retarded time. We show that the nonminimal coupling of self-gravitating scalar fields to the higher-dimensional versions of these exact gravitational waves can be done consistently. In both cases, the resulting pure radiation constraints completely fix the scalar field dependence and the form of the allowed self-interactions. More significantly, we establish that the two sets of pure radiation constraints are conformally related for any nonminimal coupling, in spite of the fact that the involved gravitational fields are not necessarily related. In this correspondence, the potential supporting the AdS waves emerges from the self-interaction associated to the pp-waves and a self-dual condition naturally satisfied by the pp-wave scalar fields

    Stability properties of black holes in self-gravitating nonlinear electrodynamics

    Get PDF
    We analyze the dynamical stability of black hole solutions in self-gravitating nonlinear electrodynamics with respect to arbitrary linear fluctuations of the metric and the electromagnetic field. In particular, we derive simple conditions on the electromagnetic Lagrangian which imply linear stability in the domain of outer communication. We show that these conditions hold for several of the regular black hole solutions found by Ayon-Beato and Garcia.Comment: 15 pages, no figure

    "No-Scalar-Hair" Theorems for Nonminimally Coupled Fields with Quartic Self-Interaction

    Get PDF
    Self-gravitating scalar fields with nonminimal coupling to gravity and having a quartic self-interaction are considered in the domain of outer communications of a static black hole. It is shown that there is no value of the nonminimal coupling parameter ζ\zeta for which nontrivial static black hole solutions exist. This result establishes the correctness of Bekenstein ``no-scalar-hair'' conjecture for quartic self-interactions.Comment: 8 pages, RevTeX

    Regular Magnetic Black Holes and Monopoles from Nonlinear Electrodynamics

    Get PDF
    It is shown that general relativity coupled to nonlinear electrodynamics (NED) with the Lagrangian L(F)L(F), F=FmnFmnF = F_mn F^mn having a correct weak field limit, leads to nontrivial static, spherically symmetric solutions with a globally regular metric if and only if the electric charge is zero and L(F)L(F) tends to a finite limit as FF \to \infty. Properties and examples of such solutions, which include magnetic black holes and soliton-like objects (monopoles), are discussed. Magnetic solutions are compared with their electric counterparts. A duality between solutions of different theories specified in two alternative formulations of NED (called FPFP duality) is used as a tool for this comparison.Comment: 6 pages, Latex2e. One more theorem, some comments and two references have been added. Final journal versio

    No-Hair Theorem for Spontaneously Broken Abelian Models in Static Black Holes

    Get PDF
    The vanishing of the electromagnetic field, for purely electric configurations of spontaneously broken Abelian models, is established in the domain of outer communications of a static asymptotically flat black hole. The proof is gauge invariant, and is accomplished without any dependence on the model. In the particular case of the Abelian Higgs model, it is shown that the only solutions admitted for the scalar field become the vacuum expectation values of the self-interaction.Comment: 8 pages, 2 figures, RevTeX; some changes to match published versio
    corecore