36 research outputs found

    Contribution of proton and electron precipitation to the observed electron concentration in October–November 2003 and September 2005

    Get PDF
    Understanding the altitude distribution of particle precipitation forcing is vital for the assessment of its atmospheric and climate impacts. However, the proportion of electron and proton forcing around the mesopause region during solar proton events is not always clear due to uncertainties in satellite-based flux observations. Here we use electron concentration observations of the European Incoherent Scatter Scientific Association (EISCAT) incoherent scatter radars located at Tromsø (69.58° N, 19.23° E) to investigate the contribution of proton and electron precipitation to the changes taking place during two solar proton events. The EISCAT measurements are compared to the results from the Sodankylä Ion and Neutral Chemistry Model (SIC). The proton ionization rates are calculated by two different methods – a simple energy deposition calculation and the Atmospheric Ionization Model Osnabrück (AIMOS v1.2), the latter providing also the electron ionization rates. Our results show that in general the combination of AIMOS and SIC is able to reproduce the observed electron concentration within ± 50% when both electron and proton forcing is included. Electron contribution is dominant above 90 km, and can contribute significantly also in the upper mesosphere especially during low or moderate proton forcing. In the case of strong proton forcing, the AIMOS electron ionization rates seem to suffer from proton contamination of satellite-based flux data. This leads to overestimation of modelled electron concentrations by up to 90% between 75–90 km and up to 100–150% at 70–75 km. Above 90 km, the model bias varies significantly between the events. Although we cannot completely rule out EISCAT data issues, the difference is most likely a result of the spatio-temporal fine structure of electron precipitation during individual events that cannot be fully captured by sparse in situ flux (point) measurements, nor by the statistical AIMOS model which is based upon these observations

    A proposal for multi-tens of GW fully coherent femtosecond soft X-ray lasers

    Get PDF
    X-ray free-electron lasers1,2 delivering up to 131013 coherent photons in femtosecond pulses are bringing about a revolution in X-ray science3?5. However, some plasma-based soft X-ray lasers6 are attractive because they spontaneously emit an even higher number of photons (131015), but these are emitted in incoherent and long (hundreds of picoseconds) pulses7 as a consequence of the amplification of stochastic incoherent self-emission. Previous experimental attempts to seed such amplifiers with coherent femtosecond soft X-rays resulted in as yet unexplained weak amplification of the seed and strong amplification of incoherent spontaneous emission8. Using a time-dependent Maxwell?Bloch model describing the amplification of both coherent and incoherent soft X-rays in plasma, we explain the observed inefficiency and propose a new amplification scheme based on the seeding of stretched high harmonics using a transposition of chirped pulse amplification to soft X-rays. This scheme is able to deliver 531014 fully coherent soft X-ray photons in 200 fs pulses and with a peak power of 20 GW

    LALINET: The First Latin American–Born Regional Atmospheric Observational Network

    Get PDF
    Sustained and coordinated efforts of lidar teams in Latin America at the beginning of the 21st century have built LALINET (Latin American Lidar NETwork), the only observational network in Latin America created by the agreement and commitment of Latin American scientists. They worked with limited funding but an abundance of enthusiasm and commitment toward their joint goal. Before LALINET, there were a few pioneering lidar stations operating in Latin America, described briefly here. Bi-annual Latin American Lidar Workshops, held from 2001 to the present, supported both the development of the regional lidar community and LALINET. At those meetings, lidar researchers from Latin America meet to conduct regular scientific and technical exchanges among themselves and with experts from the rest of the world. Regional and international scientific cooperation has played an important role for the development of both the individual teams and the network. The current LALINET status and activities are described, emphasizing the processes of standardization of the measurements, methodologies, calibration protocols, and retrieval algorithms. Failures and successes achieved in the buildup of LALINET are presented. In addition, the first LALINET joint measurement campaign and a set of aerosol extinction profile measurements obtained from the aerosol plume produced by the Calbuco volcano eruption on April 22, 2015, are described and discussed.Fil: Antuña Marrero, Juan Carlos. Centro Meteorológico de Camagüey; CubaFil: Landulfo, Eduardo. Instituto de Pesquisas Energéticas e Nucleares; BrasilFil: Estevan, René. Centro Meteorológico de Camagüey; CubaFil: Barja, Boris. Centro Meteorológico de Camagüey; Cuba. Universidade de Sao Paulo; BrasilFil: Robock, Alan. State University of New Jersey; Estados UnidosFil: Wolfram, Elian Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Ristori, Pablo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Clemesha, Barclay. Upper Atmosphere Research Group; BrasilFil: Zaratti, Francesco. Universidad Mayor de San Andrés; BoliviaFil: Forno, Ricardo. Universidad Mayor de San Andrés; BoliviaFil: Armandillo, Errico. ESTEC; Países BajosFil: Bastidas, Álvaro E.. Universidad Nacional de Colombia. Sede Medellin; ColombiaFil: de Frutos Baraja, Ángel Máximo. Universidad de Valladolid; EspañaFil: Whiteman, David N.. National Aeronautics and Space Administration; Estados UnidosFil: Quel, Eduardo Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Barbosa, Henrique M. J.. Universidade de Sao Paulo; BrasilFil: Lopes, Fabio. Comissao Nacional de Energia Nuclear. Centro de Lasers e Aplicacoes. Instituto de Pesquisas Energeticas e Nucleares.; BrasilFil: Montilla-Rosero, Elena. Universidad de Concepción; Chile. Universidad Escuela de Administración, Finanzas e Instituto Tecnológico; ColombiaFil: Guerrero Rascado, Juan L.. Comissao Nacional de Energia Nuclear. Centro de Lasers e Aplicacoes. Instituto de Pesquisas Energeticas e Nucleares.; Brasil. Universidad de Granada; Españ

    Low Temperature Electronics for Space Applications

    No full text
    To meet the requirements for very high sensitive detection posed by a number of space programmes, such as in Radioastronomy or Earth observation, the European Space Agency has been developing low temperature sensors comprising superconducting detectors from the mm to the X band, SQUID magnetometers and gradiometers. This paper will review the technology status and results achieved today

    Metal Processing at Culham

    No full text

    Straylight analysis of the external baffle of COROT

    Full text link
    The COROT mission is part of the program "mini-satellite" of CNES (French space agency). It implies international cooperation between European institutes and research centres. COROT aims to perform astroseismology observations and to detect exoplanets. Long duration observations of stars will be used to detect periodic variations with an afocal telescope followed by a dioptric objective and 4 CCDs. These very small variations can be caused by star seismic activities (about 10-6 variation of signal) or transits of planets (few 10-4 variation of signal). Due to the orbit of the spacecraft (low altitude polar orbit) and even if the observations are performed in a direction perpendicular to orbit plane, the measurements can be disturbed by the straylight reflected by the earth (albedo) that can generate a periodic perturbation. The paper details the overall optical design of the baffle. The baffle modelling and straylight computation methods are described and the expected performances are discussed. © 2017 SPIE
    corecore