519 research outputs found

    Superconductivity in spinel oxide LiTi2O4 epitaxial thin films

    Full text link
    LiTi2O4 is a unique material in that it is the only known oxide spinel superconductor. Although bulk studies have demonstrated that superconductivity can be generally described by the Bardeen-Cooper-Schreiffer theory, the microscopic mechanisms of superconductivity are not yet resolved fully. The sensitivity of the superconducting properties to various defects of the spinel crystal structure provides insight into such mechanisms. Epitaxial films of LiTi2O4 on single crystalline substrates of MgAl2O4, MgO, and SrTiO3 provide model systems to systematically explore the effects of lattice strain and microstructural disorder. Lattice strain that affects bandwidth gives rise to limited variations in the superconducting and normal state properties. Microstructural disorder such as antiphase boundaries that give rise to Ti network disorder can reduce the critical temperature, but Ti network disorder combined with Mg interdiffusion can affect the superconducting state much more dramatically. Thickness dependent transport studies indicate a superconductor-insulator transition as a function of film thickness regardless of lattice strain and microstructure. In addition, surface sensitive X-ray absorption spectroscopy has identified Ti to retain site symmetry and average valence of the bulk material regardless of film thickness.Comment: 25 pages, 7 figures, v2 - expanded Fig 1,2,7 with added discussion

    Uncompensated magnetization and exchange-bias field in La0.7_{0.7}Sr0.3_{0.3}MnO3_3/YMnO3_3 bilayers: The influence of the ferromagnetic layer

    Full text link
    We studied the magnetic behavior of bilayers of multiferroic and nominally antiferromagnetic o-YMnO3_3 (375~nm thick) and ferromagnetic La0.7_{0.7}Sr0.3_{0.3}MnO3_3 and La0.67_{0.67}Ca0.33_{0.33}MnO3_3 (8225 8 \ldots 225~nm), in particular the vertical magnetization shift MEM_E and exchange bias field HEH_E for different thickness and magnetic dilution of the ferromagnetic layer at different temperatures and cooling fields. We have found very large MEM_E shifts equivalent to up to 100\% of the saturation value of the o-YMO layer alone. The overall behavior indicates that the properties of the ferromagnetic layer contribute substantially to the MEM_E shift and that this does not correlate straightforwardly with the measured exchange bias field HEH_E.Comment: 10 figures, 8 page

    The role of magnetic anisotropy in spin filter junctions

    Full text link
    We have fabricated oxide based spin filter junctions in which we demonstrate that magnetic anisotropy can be used to tune the transport behavior of spin filter junctions. Until recently, spin filters have been largely comprised of polycrystalline materials where the spin filter barrier layer and one of the electrodes are ferromagnetic. These spin filter junctions have relied on the weak magnetic coupling between one ferromagnetic electrode and a barrier layer or the insertion of a nonmagnetic insulating layer in between the spin filter barrier and electrode. We have demonstrated spin filtering behavior in La0.7Sr0.3MnO3/chromite/Fe3O4 junctions without nonmagnetic spacer layers where the interface anisotropy plays a significant role in determining transport behavior. Detailed studies of chemical and magnetic structure at the interfaces indicate that abrupt changes in magnetic anisotropy across the non-isostructural interface is the cause of the significant suppression of junction magnetoresistance in junctions with MnCr2O4 barrier layers.Comment: 7 pages, 7 figure

    Influence of chemical and magnetic interface properties of Co-Fe-B / MgO / Co-Fe-B tunnel junctions on the annealing temperature dependence of the magnetoresistance

    Get PDF
    The knowledge of chemical and magnetic conditions at the Co40Fe40B20 / MgO interface is important to interpret the strong annealing temperature dependence of tunnel magnetoresistance of Co-Fe-B / MgO / Co-Fe-B magnetic tunnel junctions, which increases with annealing temperature from 20% after annealing at 200C up to a maximum value of 112% after annealing at 350C. While the well defined nearest neighbor ordering indicating crystallinity of the MgO barrier does not change by the annealing, a small amount of interfacial Fe-O at the lower Co-Fe-B / MgO interface is found in the as grown samples, which is completely reduced after annealing at 275C. This is accompanied by a simultaneous increase of the Fe magnetic moment and the tunnel magnetoresistance. However, the TMR of the MgO based junctions increases further for higher annealing temperature which can not be caused by Fe-O reduction. The occurrence of an x-ray absorption near-edge structure above the Fe and Co L-edges after annealing at 350C indicates the recrystallization of the Co-Fe-B electrode. This is prerequisite for coherent tunneling and has been suggested to be responsible for the further increase of the TMR above 275C. Simultaneously, the B concentration in the Co-Fe-B decreases with increasing annealing temperature, at least some of the B diffuses towards or into the MgO barrier and forms a B2O3 oxide

    The role of hydrogen in room-temperature ferromagnetism at graphite surfaces

    Full text link
    We present a x-ray dichroism study of graphite surfaces that addresses the origin and magnitude of ferromagnetism in metal-free carbon. We find that, in addition to carbon π\pi states, also hydrogen-mediated electronic states exhibit a net spin polarization with significant magnetic remanence at room temperature. The observed magnetism is restricted to the top \approx10 nm of the irradiated sample where the actual magnetization reaches 15 \simeq 15 emu/g at room temperature. We prove that the ferromagnetism found in metal-free untreated graphite is intrinsic and has a similar origin as the one found in proton bombarded graphite.Comment: 10 pages, 5 figures, 1 table, submitted to New Journal of Physic

    Synthesis and electronic properties of Ruddlesden-Popper strontium iridate epitaxial thin films stabilized by control of growth kinetics

    Full text link
    We report on the selective fabrication of high-quality Sr2_2IrO4_4 and SrIrO3_3 epitaxial thin films from a single polycrystalline Sr2_2IrO4_4 target by pulsed laser deposition. Using a combination of X-ray diffraction and photoemission spectroscopy characterizations, we discover that within a relatively narrow range of substrate temperature, the oxygen partial pressure plays a critical role in the cation stoichiometric ratio of the films, and triggers the stabilization of different Ruddlesden-Popper (RP) phases. Resonant X-ray absorption spectroscopy measurements taken at the Ir LL-edge and the O KK-edge demonstrate the presence of strong spin-orbit coupling, and reveal the electronic and orbital structures of both compounds. These results suggest that in addition to the conventional thermodynamics consideration, higher members of the Srn+1_{n+1}Irn_nO3n+1_{3n+1} series can possibly be achieved by kinetic control away from the thermodynamic limit. These findings offer a new approach to the synthesis of ultra-thin films of the RP series of iridates and can be extended to other complex oxides with layered structure.Comment: 7 pages, 6 figure
    corecore