146 research outputs found
Implications of the Babinet Principle for Casimir Interactions
We formulate the Babinet Principle (BP) as a relation between the scattering
amplitudes for electromagnetic waves, and combine it with multiple scattering
techniques to derive new properties of Casimir forces. We show that the Casimir
force exerted by a planar conductor or dielectric on a self- complementary
perforated planar mirror is approximately half that on a uniform mirror
independent of the distance between them. The BP suggests that Casimir edge
effects are anomalously small, supporting results obtained earlier in special
cases. Finally, we illustrate how the BP can be used to estimate Casimir forces
between perforated planar mirrors
Neonatal Oral Imitation in Patients with Severe Brain Damage
Background: Neonates reproduce facial movements in response to an adult model just after birth. This neonatal oral imitation usually disappears at about 2- to 3-months of age following the development of cortical control. There is controversy relating to the nature and neural basis of such neonatal imitation. To address this issue, we studied the relationship between oral imitation, primitive reflexes, and residual voluntary movement in patients with severe brain damage. Methods: Six male and six female patients with cerebral palsy, from 4 to 39 years, were included in this study. Oral imitation was examined when they were awake and looked at the experimenter. Patients were evaluated as performing oral imitation when they opened their mouth repeatedly without visual feedback regarding their own behavior in response to the experimenterβs oral movement. Tongue or lip protrusion was not examined because none of patients were able to do those behaviors due to their physical disability. Rooting and sucking reflexes were also investigated as representatives of primitive reflexes. Results: Six patients (50%) performed oral imitation. Mouth opening was not observed repeatedly in response to other facial expression without opening the mouth such as surprise or smile, excluding the possibility of nonspecific oral reaction. They exhibited little voluntary movement of their extremities. Half of them also manifested at least one primitive reflex. N
Delayed Imitation of Lipsmacking Gestures by Infant Rhesus Macaques (Macaca mulatta)
Human infants are capable of accurately matching facial gestures of an experimenter within a few hours after birth, a phenomenon called neonatal imitation. Recent studies have suggested that rather than being a simple reflexive-like behavior, infants exert active control over imitative responses and βprovokeβ previously imitated gestures even after a delay of up to 24 h. Delayed imitation is regarded as the hallmark of a sophisticated capacity to control and flexibly engage in affective communication and has been described as an indicator of innate protoconversational readiness. However, we are not the only primates to exhibit neonatal imitation, and delayed imitation abilities may not be uniquely human. Here we report that 1-week-old infant rhesus macaques (Macaca mulatta) who show immediate imitation of a lipsmacking gesture also show delayed imitation of lipsmacking, facilitated by a tendency to refrain from lipsmacking toward a still face during baseline measurements. Individual differences in delayed imitation suggest that differentially matured cortical mechanisms may be involved, allowing some newborns macaques to actively participate in communicative exchanges from birth. Macaque infants are endowed with basic social competencies of intersubjective communication that indicate cognitive and emotional commonality between humans and macaques, which may have evolved to nurture an affective mother-infant relationship in primates
Index finger movement imitation by human neonates: motivation, learning, and left-hand preference
Imitation of a fine motor movement, index finger protrusion, was examined in 39 neonates using an ethologically based objective coding system. Results confirmed that imitation of finger movements exists, and infants demonstrated "learning" as imitation developed through an incomplete imitation stage. Neonatal imitation was more frequently left-handed, an early sign of laterality in motivation to be investigated further. The existence of index finger imitation in human neonates indicates that volitional control of individuated finger movements develops much earlier than previously thought. The differential increase of index finger protrusion movements during the imitation periods suggests that this behavior is not an automatic response triggered by general arousal but instead is a true indicator of purposeful neonatal imitation
Evolutionary history of hepatitis C virus genotype 5a in France, a multicenter ANRS study
The epidemic history of HCV genotype 5a is poorly documented in France, where its prevalence is very low, except in a small central area, where it accounts for 14.2% of chronic hepatitis C cases. A Bayesian coalescent phylogenetic investigation based on the E1 envelope gene and a non-structural genomic segment (NS3/4) was carried out to trace the origin of this epidemic using a large sample of genotype 5a isolates collected throughout France. The dates of documented transmissions by blood transfusion were used to calibrate five nodes in the phylogeny. The results of the E1 gene analysis showed that the best-fitting population dynamic model was the expansion growth model under a relaxed molecular clock. The rate of nucleotide substitutions and time to the most recent common ancestors (tMRCA) of genotype 5a isolates were estimated. The divergence of all the French HCV genotype 5a strains included in this study was dated to 1939 [95% HPD: 1921β1956], and the tMRCA of isolates from central France was dated to 1954 [1942β1967], which is in agreement with epidemiological data. NS3/4 analysis provided similar estimates with strongly overlapping HPD values. Phylodynamic analyses give a plausible reconstruction of the evolutionary history of HCV genotype 5a in France, suggesting the concomitant roles of transfusion, iatrogenic route and intra-familial transmission in viral diffusion
NS3 protease polymorphism and natural resistance to protease inhibitors in French patients infected with HCV genotypes 1β5
Background: Resistant HCV populations may pre-exist in patients before NS3 protease inhibitor therapy and would likely be selected under specific antiviral pressure. The higher prevalence and lower rate of response to treatment associated with HCV genotype 1 infections has led to drug discovery efforts being focused primarily on enzymes produced by this genotype. Protease inhibitors may also be useful for non-genotype-1-infected patients, notably for non-responders.Methods: We investigated the prevalence of dominant resistance mutations and polymorphism in 298 HCV protease-inhibitor-naive patients infected with HCV genotypes 1, 2, 3, 4 or 5. Genotype-specific NS3 primers were designed to amplify and sequence the NS3 protease gene. Results: None of the 233 analysed sequences contained major telaprevir (TVR) or boceprevir (BOC) resistance mutations (R155K/T/M, A156S/V/T and V170A). Some substitutions (V36L, T54S, Q80K/R, D168Q and V170T) linked to low or moderate decreases in HCV sensitivity to protease inhibitors were prevalent according to genotype (between 2% and 100%). Other than genotype signature mutations at positions 36, 80 and 168, the most frequent substitution was T54S (4 genotype 1 and 2 genotype 4 sequences). All genotype 2β5 sequences had the non-genotype-1 signature V36L mutation known to confer low-level resistance to both TVR and BOC. Conclusions: We have developed an HCV protease NS3 inhibitor resistance genotyping tool suitable for use with HCV genotypes 1β5. Polymorphism data is valuable for interpreting genotypic resistance profiles in cases of failure of anti-HCV NS3 protease treatment
Holding an object one is looking at: Kinesthetic information on the objectβs distance does not improve visual judgments of its size
Visual judgments of distance are often inaccurate. Nevertheless, information on distance must be procured if retinal image size is to be used to judge an object's dimensions. In the present study, we examined whether kinesthetic information about an object's distance - based on the posture of the arm and hand when holding it - influences the object's perceived size. Subjects were presented with a computer simulation of a cube. This cube's position was coupled to that of a rod in the subject's hand. Its size was varied between presentations. Subjects had to judge whether the cube they saw was larger than, smaller than, or the same size as a reference. On some presentations, a small difference was introduced between the positions of the rod and of the simulated cube. When the simulated cube was slightly closer than the rod, subjects judged the cube to be larger. When it was farther away, they judged it to be smaller. We show that these changes in perceived size are due to alterations in the cube's distance from the subject rather than to kinesthetic information
The Hepatitis E Virus Polyproline Region Is Involved in Viral Adaptation
Genomes of hepatitis E virus (HEV), rubivirus and cutthroat virus (CTV) contain a region of high proline density and low amino acid (aa) complexity, named the polyproline region (PPR). In HEV genotypes 1, 3 and 4, it is the only region within the non-structural open reading frame (ORF1) with positive selection (4β10 codons with dN/dS>1). This region has the highest density of sites with homoplasy values >0.5. Genotypes 3 and 4 show βΌ3-fold increase in homoplastic density (HD) in the PPR compared to any other region in ORF1, genotype 1 does not exhibit significant HD (p<0.0001). PPR sequence divergence was found to be 2-fold greater for HEV genotypes 3 and 4 than for genotype 1. The data suggest the PPR plays an important role in host-range adaptation. Although the PPR appears to be hypervariable and homoplastic, it retains as much phylogenetic signal as any other similar sized region in the ORF1, indicating that convergent evolution operates within the major HEV phylogenetic lineages. Analyses of sequence-based secondary structure and the tertiary structure identify PPR as an intrinsically disordered region (IDR), implicating its role in regulation of replication. The identified propensity for the disorder-to-order state transitions indicates the PPR is involved in protein-protein interactions. Furthermore, the PPR of all four HEV genotypes contains seven putative linear binding motifs for ligands involved in the regulation of a wide number of cellular signaling processes. Structure-based analysis of possible molecular functions of these motifs showed the PPR is prone to bind a wide variety of ligands. Collectively, these data suggest a role for the PPR in HEV adaptation. Particularly as an IDR, the PPR likely contributes to fine tuning of viral replication through protein-protein interactions and should be considered as a target for development of novel anti-viral drugs
Stability of Yellow Fever Virus under Recombinatory Pressure as Compared with Chikungunya Virus
Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of βΌ2.4Γ106 in BHK-21 (vertebrate) cells and βΌ1.05Γ105 in C710 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely
- β¦