3,914 research outputs found

    Controlling the Sign of Magnetoconductance in Andreev Quantum Dots

    Full text link
    We construct a theory of coherent transport through a ballistic quantum dot coupled to a superconductor. We show that the leading-order quantum correction to the two-terminal conductance of these Andreev quantum dots may change sign depending on (i) the number of channels carried by the normal leads or (ii) the magnetic flux threading the dot. In contrast, spin-orbit interaction may affect the magnitude of the correction, but not always its sign. Experimental signatures of the effect include a non-monotonic magnetoconductance curve and a transition from an insulator-like to a metal-like temperature dependence of the conductance. Our results are applicable to ballistic or disordered dots.Comment: Final version (4pages 3figs)- improved presentation and fig 3, and updated reference

    3-D Models of Embedded High-Mass Stars: Effects of a Clumpy Circumstellar Medium

    Full text link
    We use 3-D radiative transfer models to show the effects of clumpy circumstellar material on the observed infrared colors of high mass stars embedded in molecular clouds. We highlight differences between 3-D clumpy and 1-D smooth models which can affect the interpretation of data. We discuss several important properties of the emergent spectral energy distribution (SED): More near-infrared light (scattered and direct from the central source) can escape than in smooth 1-D models. The near- and mid-infrared SED of the same object can vary significantly with viewing angle, depending on the clump geometry along the sightline. Even the wavelength-integrated flux can vary with angle by more than a factor of two. Objects with the same average circumstellar dust distribution can have very different near-and mid-IR SEDs depending on the clump geometry and the proximity of the most massive clump to the central source. Although clumpiness can cause similar objects to have very different SEDs, there are some observable trends. Near- and mid-infrared colors are sensitive to the weighted average distance of clumps from the central source and to the magnitude of clumpy density variations (smooth-to-clumpy ratio). Far-infrared emission remains a robust measure of the total dust mass. We present simulated SEDs, colors, and images for 2MASS and Spitzer filters. We compare to observations of some UCHII regions and find that 3-D clumpy models fit better than smooth models. In particular, clumpy models with fractal dimensions in the range 2.3-2.8, smooth to clumpy ratios of <50%, and density distributions with shallow average radial density profiles fit the SEDs best.Comment: accepted to ApJ; version with full-res figures: http://www.astro.virginia.edu/~ri3e/clumpy3d.pd

    Can Reflection from Grains Diagnose the Albedo?

    Get PDF
    By radiation transfer models with a realistic power spectra of the projected density distributions, we show that the optical properties of grains are poorly constrained by observations of reflection nebulae. The ISM is known to be hierarchically clumped from a variety of observations (molecules, H I, far-infrared). Our models assume the albedo and phase parameter of the dust, the radial optical depth of the sphere averaged over all directions, and random distributions of the dust within the sphere. The outputs are the stellar extinction, optical depth, and flux of scattered light as seen from various viewing angles. Observations provide the extinction and scattered flux from a particular direction. Hierarchical geometry has a large effect on the flux of scattered light emerging from a nebula for a particular extinction of the exciting star. There is a very large spread in both scattered fluxes and extinctions for any distribution of dust. Consequently, an observed stellar extinction and scattered flux can be fitted by a wide range of albedos. With hierarchical geometry it is not completely safe to determine even relative optical constants from multiwavelength observations of the same reflection nebula. The geometry effectively changes with wavelength as the opacity of the clumps varies. Limits on the implications of observing the same object in various wavelengths are discussed briefly. Henry (2002) uses a recipe to determine the scattered flux from a star with a given extinction. It is claimed to be independent of the geometry. It provides considerably more scattering than our models, probably leading to an underestimate of the grain albedos from the UV Diffuse Galactic Light.Comment: 27 pages, including 7 figures. Accepted by Ap

    2-D Radiative Transfer in Protostellar Envelopes: I. Effects of Geometry on Class I Sources

    Full text link
    We present 2-D radiation transfer models of Class I Protostars and show the effect of including more realistic geometries on the resulting spectral energy distributions and images. We begin with a rotationally flattened infalling envelope as our comparison model, and add a flared disk and bipolar cavity. The disk affects the spectral energy distribution most strongly at edge-on inclinations, causing a broad dip at about 10 um (independent of the silicate feature) due to high extinction and low scattering albedo in this wavelength region. The bipolar cavities allow more direct stellar+disk radiation to emerge into polar directions, and more scattering radiation to emerge into all directions. The wavelength-integrated flux, often interpreted as luminosity, varies with viewing angle, with pole-on viewing angles seeing 2-4 times as much flux as edge-on, depending on geometry. Thus, observational estimates of luminosity should take into account the inclination of a source. The envelopes with cavities are significantly bluer in near-IR and mid-IR color-color plots than those without cavities. Using 1-D models to interpret Class I sources with bipolar cavities would lead to an underestimate of envelope mass and an overestimate of the implied evolutionary state. We compute images at near-, mid-, and far-IR wavelengths. We find that the mid-IR colors and images are sensitive to scattering albedo, and that the flared disk shadows the midplane on large size scales at all wavelengths plotted. Finally, our models produce polarization spectra which can be used to diagnose dust properties, such as albedo variations due to grain growth. Our results of polarization across the 3.1 um ice feature agree well with observations for ice mantles covering 5% of the radius of the grains.Comment: Accepted for publication in ApJ, 37 pages, 13 figures (several figures reduced in quality; find original version at http://gemelli.colorado.edu/~bwhitney/preprints.html

    Herschel Observations of a Newly Discovered UX Ori Star in the Large Magellanic Cloud

    Full text link
    The LMC star, SSTISAGE1C J050756.44-703453.9, was first noticed during a survey of EROS-2 lightcurves for stars with large irregular brightness variations typical of the R Coronae Borealis (RCB) class. However, the visible spectrum showing emission lines including the Balmer and Paschen series as well as many Fe II lines is emphatically not that of an RCB star. This star has all of the characteristics of a typical UX Ori star. It has a spectral type of approximately A2 and has excited an H II region in its vicinity. However, if it is an LMC member, then it is very luminous for a Herbig Ae/Be star. It shows irregular drops in brightness of up to 2 mag, and displays the reddening and "blueing" typical of this class of stars. Its spectrum, showing a combination of emission and absorption lines, is typical of a UX Ori star that is in a decline caused by obscuration from the circumstellar dust. SSTISAGE1C J050756.44-703453.9 has a strong IR excess and significant emission is present out to 500 micron. Monte Carlo radiative transfer modeling of the SED requires that SSTISAGE1C J050756.44-703453.9 has both a dusty disk as well as a large extended diffuse envelope to fit both the mid- and far-IR dust emission. This star is a new member of the UX Ori subclass of the Herbig Ae/Be stars and only the second such star to be discovered in the LMC.Comment: ApJ, in press. 9 pages, 5 figure

    General duality for abelian-group-valued statistical-mechanics models

    Full text link
    We introduce a general class of statistical-mechanics models, taking values in an abelian group, which includes examples of both spin and gauge models, both ordered and disordered. The model is described by a set of ``variables'' and a set of ``interactions''. A Gibbs factor is associated to each variable and to each interaction. We introduce a duality transformation for systems in this class. The duality exchanges the abelian group with its dual, the Gibbs factors with their Fourier transforms, and the interactions with the variables. High (low) couplings in the interaction terms are mapped into low (high) couplings in the one-body terms. The idea is that our class of systems extends the one for which the classical procedure 'a la Kramers and Wannier holds, up to include randomness into the pattern of interaction. We introduce and study some physical examples: a random Gaussian Model, a random Potts-like model, and a random variant of discrete scalar QED. We shortly describe the consequence of duality for each example.Comment: 26 pages, 2 Postscript figure

    IR Dust Bubbles: Probing the Detailed Structure and Young Massive Stellar Populations of Galactic HII Regions

    Full text link
    We present an analysis of wind-blown, parsec-sized, mid-infrared bubbles and associated star-formation using GLIMPSE/IRAC, MIPSGAL/MIPS and MAGPIS/VLA surveys. Three bubbles from the Churchwell et al. (2006) catalog were selected. The relative distribution of the ionized gas (based on 20 cm emission), PAH emission (based on 8 um, 5.8 um and lack of 4.5 um emission) and hot dust (24 um emission) are compared. At the center of each bubble there is a region containing ionized gas and hot dust, surrounded by PAHs. We identify the likely source(s) of the stellar wind and ionizing flux producing each bubble based upon SED fitting to numerical hot stellar photosphere models. Candidate YSOs are also identified using SED fitting, including several sites of possible triggered star formation.Comment: 37 pages, 17 figure
    • …
    corecore