1,067 research outputs found
Orbital selective crossover and Mott transitions in an asymmetric Hubbard model of cold atoms in optical lattices
We study the asymmetric Hubbard model at half-filling as a generic model to
describe the physics of two species of repulsively interacting fermionic cold
atoms in optical lattices. We use Dynamical Mean Field Theory to obtain the
paramagnetic phase diagram of the model as function of temperature, interaction
strength and hopping asymmetry. A Mott transition with a region of two
coexistent solutions is found for all nonzero values of the hopping asymmetry.
At low temperatures the metallic phase is a heavy Fermi-liquid, qualitatively
analogous to the Fermi liquid state of the symmetric Hubbard model. Above a
coherence temperature, an orbital-selective crossover takes place, wherein one
fermionic species effectively localizes, and the resulting bad metallic state
resembles the non-Fermi liquid state of the Falicov-Kimball model. We compute
observables relevant to cold atom systems such as the double occupation, the
specific heat and entropy and characterize their behavior in the different
phases
Weak coupling study of decoherence of a qubit in disordered magnetic environments
We study the decoherence of a qubit weakly coupled to frustrated spin baths.
We focus on spin-baths described by the classical Ising spin glass and the
quantum random transverse Ising model which are known to have complex
thermodynamic phase diagrams as a function of an external magnetic field and
temperature. Using a combination of numerical and analytical methods, we show
that for baths initally in thermal equilibrium, the resulting decoherence is
highly sensitive to the nature of the coupling to the environment and is
qualitatively different in different parts of the phase diagram. We find an
unexpected strong non-Markovian decay of the coherence when the random
transverse Ising model bath is prepared in an initial state characterized by a
finite temperature paramagnet. This is contrary to the usual case of
exponential decay (Markovian) expected for spin baths in finite temperature
paramagnetic phases, thereby illustrating the importance of the underlying
non-trivial dynamics of interacting quantum spinbaths.Comment: 12 pages, 18 figure
Phase diagram of the asymmetric Hubbard model and an entropic chromatographic method for cooling cold fermions in optical lattices
We study the phase diagram of the asymmetric Hubbard model (AHM), which is
characterized by different values of the hopping for the two spin projections
of a fermion or equivalently, two different orbitals. This model is expected to
provide a good description of a mass-imbalanced cold fermionic mixture in a 3D
optical lattice. We use the dynamical mean field theory to study various
physical properties of this system. In particular, we show how
orbital-selective physics, observed in multi-orbital strongly correlated
electron systems, can be realized in such a simple model. We find that the
density distribution is a good probe of this orbital selective crossover from a
Fermi liquid to a non-Fermi liquid state.
Below an ordering temperature , which is a function of both the
interaction and hopping asymmetry, the system exhibits staggered long range
orbital order. Apart from the special case of the symmetric limit, i.e.,
Hubbard model, where there is no hopping asymmetry, this orbital order is
accompanied by a true charge density wave order for all values of the hopping
asymmetry. We calculate the order parameters and various physical quantities
including the thermodynamics in both the ordered and disordered phases. We find
that the formation of the charge density wave is signaled by an abrupt increase
in the sublattice double occupancies. Finally, we propose a new method,
entropic chromatography, for cooling fermionic atoms in optical lattices, by
exploiting the properties of the AHM. To establish this cooling strategy on a
firmer basis, we also discuss the variations in temperature induced by the
adiabatic tuning of interactions and hopping parameters.Comment: 16 pages, 19 fig
Landau Theory of the Finite Temperature Mott Transition
In the context of the dynamical mean-field theory of the Hubbard model, we
identify microscopically an order parameter for the finite temperature Mott
endpoint. We derive a Landau functional of the order parameter. We then use the
order parameter theory to elucidate the singular behavior of various physical
quantities which are experimentally accessible.Comment: 4 pages, 2 figure
Non-equilibrium electronic transport in a one-dimensional Mott insulator
We calculate the non-equilibrium electronic transport properties of a
one-dimensional interacting chain at half filling, coupled to non-interacting
leads. The interacting chain is initially in a Mott insulator state that is
driven out of equilibrium by applying a strong bias voltage between the leads.
For bias voltages above a certain threshold we observe the breakdown of the
Mott insulator state and the establishment of a steady-state electronic current
through the system. Based on extensive time-dependent density matrix
renormalization group simulations, we show that this steady-state current
always has the same functional dependence on voltage, independent of the
microscopic details of the model and relate the value of the threshold to the
Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric
breakdown picture. Finally, we also discuss the real-time evolution of the
current, and characterize the current-carrying state resulting from the
breakdown of the Mott insulator by computing the double occupancy, the spin
structure factor, and the entanglement entropy.Comment: 12 pages RevTex4, 12 eps figures, as published, minor revision
First-Order Insulator-to-Metal Mott Transition in the Paramagnetic 3D System GaTa4Se8
The nature of the Mott transition in the absence of any symmetry braking
remains a matter of debate. We study the correlation-driven insulator-to-metal
transition in the prototypical 3D Mott system GaTa4Se8, as a function of
temperature and applied pressure. We report novel experiments on single
crystals, which demonstrate that the transition is of first order and follows
from the coexistence of two states, one insulating and one metallic, that we
toggle with a small bias current. We provide support for our findings by
contrasting the experimental data with calculations that combine local density
approximation with dynamical mean-field theory, which are in very good
agreement.Comment: 5 pages and 4 figures. Supplemental material: 2 pages, 2 figure
Equation of motion approach to the Hubbard model in infinite dimensions
We consider the Hubbard model on the infinite-dimensional Bethe lattice and
construct a systematic series of self-consistent approximations to the
one-particle Green's function, . The first
equations of motion are exactly fullfilled by and the
'th equation of motion is decoupled following a simple set of decoupling
rules. corresponds to the Hubbard-III approximation. We
present analytic and numerical results for the Mott-Hubbard transition at half
filling for .Comment: 10pager, REVTEX, 8-figures not available in postscript, manuscript
may be understood without figure
Transfer of Spectral Weight in Spectroscopies of Correlated Electron Systems
We study the transfer of spectral weight in the photoemission and optical
spectra of strongly correlated electron systems. Within the LISA, that becomes
exact in the limit of large lattice coordination, we consider and compare two
models of correlated electrons, the Hubbard model and the periodic Anderson
model. The results are discussed in regard of recent experiments. In the
Hubbard model, we predict an anomalous enhancement optical spectral weight as a
function of temperature in the correlated metallic state which is in
qualitative agreement with optical measurements in . We argue that
anomalies observed in the spectroscopy of the metal are connected to the
proximity to a crossover region in the phase diagram of the model. In the
insulating phase, we obtain an excellent agreement with the experimental data
and present a detailed discussion on the role of magnetic frustration by
studying the resolved single particle spectra. The results for the periodic
Anderson model are discussed in connection to recent experimental data of the
Kondo insulators and . The model can successfully explain
the different energy scales that are associated to the thermal filling of the
optical gap, which we also relate to corresponding changes in the density of
states. The temperature dependence of the optical sum rule is obtained and its
relevance for the interpretation of the experimental data discussed. Finally,
we argue that the large scattering rate measured in Kondo insulators cannot be
described by the periodic Anderson model.Comment: 19 pages + 29 figures. Submitted to PR
Mott transition at large orbital degeneracy: dynamical mean-field theory
We study analytically the Mott transition of the N-orbital Hubbard model
using dynamical mean-field theory and a low-energy projection onto an effective
Kondo model. It is demonstrated that the critical interaction at which the
insulator appears (Uc1) and the one at which the metal becomes unstable (Uc2)
have different dependence on the number of orbitals as the latter becomes
large: Uc1 ~ \sqrt{N} while Uc2 ~ N. An exact analytical determination of the
critical coupling Uc2/N is obtained in the large-N limit. The metallic solution
close to this critical coupling has many similarities at low-energy with the
results of slave boson approximations, to which a comparison is made. We also
discuss how the critical temperature associated with the Mott critical endpoint
depends on the number of orbitals.Comment: 13 pages. Minor changes in V
- …