9,037 research outputs found

    Superfluidity of "dirty" indirect excitons and magnetoexcitons in two-dimensional trap

    Full text link
    The superfluid phase transition of bosons in a two-dimensional (2D) system with disorder and an external parabolic potential is studied. The theory is applied to experiments on indirect excitons in coupled quantum wells. The random field is allowed to be large compared to the dipole-dipole repulsion between excitons. The slope of the external parabolic trap is assumed to change slowly enough to apply the local density approximation (LDA) for the superfluid density, which allows us to calculate the Kosterlitz-Thouless temperature Tc(n(r))T_{c}(n(r)) at each local point rr of the trap. The superfluid phase occurs around the center of the trap (r=0\mathbf{r}=0) with the normal phase outside this area. As temperature increases, the superfluid area shrinks and disappears at temperature Tc(n(r=0))T_{c}(n(r=0)). Disorder acts to deplete the condensate; the minimal total number of excitons for which superfluidity exists increases with disorder at fixed temperature. If the disorder is large enough, it can destroy the superfluid entirely. The effect of magnetic field is also calculated for the case of indirect excitons. In a strong magnetic field HH, the superfluid component decreases, primarily due to the change of the exciton effective mass.Comment: 13 pages, 3 figure

    The Level Spacing Distribution Near the Anderson Transition

    Full text link
    For a disordered system near the Anderson transition we show that the nearest-level-spacing distribution has the asymptotics P(s)exp(As2γ)P(s)\propto \exp(-A s^{2-\gamma }) for s\gg \av{s}\equiv 1 which is universal and intermediate between the Gaussian asymptotics in a metal and the Poisson in an insulator. (Here the critical exponent 0<γ<10<\gamma<1 and the numerical coefficient AA depend only on the dimensionality d>2d>2). It is obtained by mapping the energy level distribution to the Gibbs distribution for a classical one-dimensional gas with a pairwise interaction. The interaction, consistent with the universal asymptotics of the two-level correlation function found previously, is proved to be the power-law repulsion with the exponent γ-\gamma.Comment: REVTeX, 8 pages, no figure

    A Genetic Locus Regulates the Expression of Tissue-Specific mRNAs from Multiple Transcription Units

    Get PDF
    129 GIX- mice, unlike animals of the congeneic partner strain GIX+, do not express significant amounts of the retroviral antigens gp70 and p30. Evidence is presented indicating that the GIX phenotype is specified by a distinct regulatory gene acting on multiple transcription units to control the levels of accumulation of specific mRNA species. The steady-state levels of retroviral-homologous mRNA from the tissues of GIX+ and GIX- mice were examined by blot hybridization using as probes DNA fragments from cloned murine leukemia viruses. RNA potentially encoding viral antigens was reduced or absent in GIX- mice, even though no differences in integrated viral genomes were detected between these congeneic strains by DNA blotting. Tissue-specific patterns of accumulation of these RNA species were detected in brain, epididymis, liver, spleen, and thymus, and several distinct RNA species were found to be coordinately regulated with the GIX phenotype. Measurements of RNA synthesis suggest a major role for transcriptional control in the regulation of some retroviral messages

    Theory of the Jamming Transition at Finite Temperature

    Get PDF
    A theory for the microscopic structure and the vibrational properties of soft sphere glass at finite temperature is presented. With an effective potential, derived here, the phase diagram and vibrational properties are worked out around the Maxwell critical point at zero temperature TT and pressure pp. Variational arguments and effective medium theory identically predict a non-trivial temperature scale Tp(2a)/(1a)T^*\sim p^{(2-a)/(1-a)} with a0.17a \approx 0.17 such that low-energy vibrational properties are hard-sphere like for TTT \gtrsim T^*, and zero-temperature soft-sphere like otherwise. However, due to crossovers in the equation of state relating TT, pp, and the packing fraction ϕ\phi, these two regimes lead to four regions where scaling behaviors differ when expressed in terms of TT and ϕ\phi. Scaling predictions are presented for the mean-squared displacement, characteristic frequency, shear modulus, and characteristic elastic length in all regions of the phase diagram.Comment: 8 pages + 3 pages S

    Bose-Einstein condensation of trapped polaritons in 2D electron-hole systems in a high magnetic field

    Full text link
    The Bose-Einstein condensation (BEC) of magnetoexcitonic polaritons in two-dimensional (2D) electron-hole system embedded in a semiconductor microcavity in a high magnetic field BB is predicted. There are two physical realizations of 2D electron-hole system under consideration: a graphene layer and quantum well (QW). A 2D gas of magnetoexcitonic polaritons is considered in a planar harmonic potential trap. Two possible physical realizations of this trapping potential are assumed: inhomogeneous local stress or harmonic electric field potential applied to excitons and a parabolic shape of the semiconductor cavity causing the trapping of microcavity photons. The effective Hamiltonian of the ideal gas of cavity polaritons in a QW and graphene in a high magnetic field and the BEC temperature as functions of magnetic field are obtained. It is shown that the effective polariton mass MeffM_{\rm eff} increases with magnetic field as B1/2B^{1/2}. The BEC critical temperature Tc(0)T_{c}^{(0)} decreases as B1/4B^{-1/4} and increases with the spring constant of the parabolic trap. The Rabi splitting related to the creation of a magnetoexciton in a high magnetic field in graphene and QW is obtained. It is shown that Rabi splitting in graphene can be controlled by the external magnetic field since it is proportional to B1/4B^{-1/4}, while in a QW the Rabi splitting does not depend on the magnetic field when it is strong.Comment: 16 pages, 6 figures. accepted in Physical Review

    Pseudo diamagnetism of four component exciton condensates

    Full text link
    We analyze the spin structure of the ground state of four-component exciton condensates in coupled quantum wells as a function of spin-dependent interactions and applied magnetic field. The four components correspond to the degenerate exciton states characterized by ±2\pm2 and ±1\pm1 spin projections to the axis of the structure. We show that in a wide range of parameters, the chemical potential of the system increases as a function of magnetic field, which manifests a pseudo-diamagnetism of the system. The transitions to polarized two- and one-component condensates can be of the first-order in this case. The predicted effects are caused by energy conserving mixing of ±2\pm2 and ±1\pm1 excitons.Comment: 4 pages, 2 figure

    Two-dimensional magnetoexcitons in the presence of spin-orbit coupling

    Full text link
    We study theoretically the effect of spin-orbit coupling on quantum well excitons in a strong magnetic field. We show that, in the presence of an in-plane field component, the excitonic absorption spectrum develops a double-peak structure due to hybridization of bright and dark magnetoexcitons. If the Rashba and Dresselhaus spin-orbit constants are comparable, the magnitude of splitting can be tuned in a wide interval by varying the azimuthal angle of the in-plane field. We also show that the interplay between spin-orbit and Coulomb interactions leads to an anisotropy of exciton energy dispersion in the momentum plane. The results suggest a way for direct optical measurements of spin-orbit parameters.Comment: 9 pages, 6 figure
    corecore