9,008 research outputs found
Macrospin Tunneling and Magnetopolaritons with Nanomechanical Interference
We theoretically address the quantum dynamics of a nanomechanical resonator
coupled to the macrospin of a magnetic nanoparticle by both instanton and
perturbative approaches. We demonstrate suppression of the tunneling between
opposite magnetizations by nanomechanical interference. By approximating the
macrospin as a two-level system, we describe magnetopolaritons and their
destruction by interference. The predictions can be verified experimentally by
a molecular magnet attached to a nanomechanical bridge.Comment: 4.4 pages, 3 figures. Slightly revised presentation, results
unchange
Entropic uncertainty relations and locking: tight bounds for mutually unbiased bases
We prove tight entropic uncertainty relations for a large number of mutually
unbiased measurements. In particular, we show that a bound derived from the
result by Maassen and Uffink for 2 such measurements can in fact be tight for
up to sqrt{d} measurements in mutually unbiased bases. We then show that using
more mutually unbiased bases does not always lead to a better locking effect.
We prove that the optimal bound for the accessible information using up to
sqrt{d} specific mutually unbiased bases is log d/2, which is the same as can
be achieved by using only two bases. Our result indicates that merely using
mutually unbiased bases is not sufficient to achieve a strong locking effect,
and we need to look for additional properties.Comment: 9 pages, RevTeX, v3: complete rewrite, new title, many new results,
v4: minor changes, published versio
No Evidence for Orbital Loop Currents in Charge Ordered YBaCuO from Polarized Neutron Diffraction
It has been proposed that the pseudogap state of underdoped cuprate
superconductors may be due to a transition to a phase which has circulating
currents within each unit cell. Here, we use polarized neutron diffraction to
search for the corresponding orbital moments in two samples of underdoped
YBaCuO with doping levels and 0.123. In contrast to
some other reports using polarized neutrons, but in agreement with nuclear
magnetic resonance and muon spin rotation measurements, we find no evidence for
the appearance of magnetic order below 300 K. Thus, our experiment suggests
that such order is not an intrinsic property of high-quality cuprate
superconductor single crystals. Our results provide an upper bound for a
possible orbital loop moment which depends on the pattern of currents within
the unit cell. For example, for the CC- pattern proposed by Varma,
we find that the ordered moment per current loop is less than 0.013 for
.Comment: Comments in arXiv:1710.08173v1 fully addresse
Convergence Conditions for Random Quantum Circuits
Efficient methods for generating pseudo-randomly distributed unitary
operators are needed for the practical application of Haar distributed random
operators in quantum communication and noise estimation protocols. We develop a
theoretical framework for analyzing pseudo-random ensembles generated through a
random circuit composition. We prove that the measure over random circuits
converges exponentially (with increasing circuit length) to the uniform (Haar)
measure on the unitary group and describe how the rate of convergence may be
calculated for specific applications.Comment: 4 pages (revtex), comments welcome. v2: reference added, title
changed; v3: published version, minor changes, references update
A Comparison of the High-Frequency Magnetic Fluctuations in Insulating and Superconducting La2-xSrxCuO4
Inelastic neutron scattering performed at a spallation source is used to make
absolute measurements of the dynamic susceptibility of insulating La2CuO4 and
superconducting La2-xSrxCuO4 over the energy range 15<EN<350 meV. The effect of
Sr doping on the magnetic excitations is to cause a large broadening in
wavevector and a substantial change in the spectrum of the local spin
fluctuations. Comparison of the two compositions reveals a new energy scale of
22 meV in La1.86Sr0.14CuO4.Comment: RevTex, 7 Pages, 4 postscript figure
Calf pre-weaning traits and immunoglobulin response to bovine viral diarrhea virus vaccination
Calfhood vaccination for bovine viral diarrhea virus (BVDV) is a relatively new concept, and protocols are evolving. Our objective was to determine effects of BVDV type I vaccination protocol, calf behavior (chute score, and chute exit velocity), and gender on calf gain and immunoglobulin (Ig) response. Crossbred calves (n = 64) were randomly allotted to one of two vaccination protocols. In protocol 1, calves were vaccinated at 60 d of age (d 0) and at weaning (d 147). Calves assigned to protocol 2 were vaccinated against BVDV type I at 21 d prior to (d 126) and at weaning (d 147). Blood samples were collected from half of the calves in each protocol group on d 0 (60 days of age), d 21, d 126 (21 days prior to weaning), and d 147 (at weaning); serum was harvested and Ig titers were determined. Titers for BVDV type I were transformed (log base 2) and analyzed using a mixed model procedure. Calves vaccinated at d 0 and weaning had larger (P \u3c 0.0001) titers than calves vaccinated at d 126 and weaning (7.5 ± 0.36 and 5.1 ± 0.36, respectively). Mean BVDV titers were larger (P \u3c 0.0001) on d 147 when compared with d 126, d 21, and d 0 (8.3 ± 0.39, 5.1 ± 0.40, 5.9 ± 0.39 and 5.7 ± 0.39, respectively). A treatment × day interaction (P \u3c 0.0001) also affected BVDV titers. However, BVDV titers were not affected (P \u3e 0.05) by calf gender, chute score, or chute exit velocity. Weaning weight and pre-weaning average daily gain (ADG) were not related to BVDV type I titers. This study indicated that vaccinating beef calves against BVDV was effective in triggering an Ig response. Furthermore, our results suggest that calves should be vaccinated against BVDV type I at 60 d of age for greater disease resistance
Decoupling with unitary approximate two-designs
Consider a bipartite system, of which one subsystem, A, undergoes a physical
evolution separated from the other subsystem, R. One may ask under which
conditions this evolution destroys all initial correlations between the
subsystems A and R, i.e. decouples the subsystems. A quantitative answer to
this question is provided by decoupling theorems, which have been developed
recently in the area of quantum information theory. This paper builds on
preceding work, which shows that decoupling is achieved if the evolution on A
consists of a typical unitary, chosen with respect to the Haar measure,
followed by a process that adds sufficient decoherence. Here, we prove a
generalized decoupling theorem for the case where the unitary is chosen from an
approximate two-design. A main implication of this result is that decoupling is
physical, in the sense that it occurs already for short sequences of random
two-body interactions, which can be modeled as efficient circuits. Our
decoupling result is independent of the dimension of the R system, which shows
that approximate 2-designs are appropriate for decoupling even if the dimension
of this system is large.Comment: Published versio
- …