822 research outputs found

    Structural and Optical Properties of Varies Thickness of Znte Nanoparticle

    Get PDF
    ZnTe thin films of different thicknesses were deposited onto glass substrates for optical devices applications. Xray diffractogram of different thicknesses for ZnTe films are measured and their patterns exhibits polycrystalline nature with a preferential orientation along the (111) plane. X-ray diffraction techniques have been employed to determine the microstructure parameters, both crystallite size and microstrain. Film thickness and the optical constants of ZnTe films were calculated based on the measured transmittance spectral data using Swanepole’s method in the wavelength range 400–2500 nm. The refractive index n and absorption index k were calculated, and the refractive index exhibits a normal dispersion. The refractive index could be extrapolated by Cauchy dispersion relationship over the whole spectra range, which extended from 400 to 2500 nm. The optical band gap can be calculated in strong absorption region and displays an allowed direct transition. Both the refractive index and the band gap increase with the increase film thickness, thus ZnTe/glass substrates are good candidates in optoelectronic devices

    Structural and Optical Properties of Varies Thickness of Znte Nanoparticle

    Get PDF
    ZnTe thin films of different thicknesses were deposited onto glass substrates for optical devices applications. Xray diffractogram of different thicknesses for ZnTe films are measured and their patterns exhibits polycrystalline nature with a preferential orientation along the (111) plane. X-ray diffraction techniques have been employed to determine themicrostructure parameters, both crystallite size and microstrain. Film thickness and the optical constants of ZnTe films were calculated based on the measured transmittance spectral data using Swanepole’s method in the wavelength range 400–2500 nm. The refractive index n and absorption index k were calculated and the refractive index exhibits a normal dispersion. The refractive index could be extrapolated by Cauchy dispersion relationship over the whole spectra range, which extended from 400 to 2500 nm. The optical band gap can be calculated in strong absorption region and displays an allowed direct transition. Both the refractive index and the band gap increase with the increase film thickness, thus ZnTe/glass substrates are good candidates in optoelectronic devices.Keywords: ZnTe, thin film, cry crystallitze size; microstrain; optical constants

    (E)-1-[5-Methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl]-3-(4-nitrophenyl)prop-2-en-1-one

    Get PDF
    The title compound, C19H16N4O3, crystallizes with two molecules (A and B) in the asymmetric unit. In molecule A, the dihedral angles between the triazole ring and the toluyl and nitrobenzene rings are 62.68 (16) and 10.77 (15)°, respectively. The corresponding data for molecule B are 68.61 (17) and 15.59 (15)°, respectively. In the crystal, the B molecules are linked by C—H...N hydrogen bonds to generate [001] chains. Weak C—H...π(benzene) and N—O...π(triazole) contacts are also present

    5-Methyl-N'-(5-methyl-1-phenyl-1H-1,2,3-triazole-4-carbonyl)-1-phenyl-1H-1,2,3-triazole-4-carbohydrazide

    Get PDF
    The asymmetric unit of the title compound, C20H18N8O2, comprises one complete molecule and a half molecule completed by crystallographic twofold symmetry leading to Z = 12. The dihedral angles between the planes of the linked phenyl and methyltriazolyl groups are 69.48 (5) and 44.85 (9)° for the first molecule and 42.88 (9)° for the second. The conformations of the diformyl hydrazyl groups of the molecules are similar as indicated by C—N—N—C torsion angles of −83.4 (2) and −86.4 (3)°. In the crystal, neighbouring molecules are linked by pairs of N—H...O hydrogen bonds to form independent columns propagating parallel to the c-axis direction

    4-(4-Bromophenyl)-2-(3-(4-chlorophenyl)-5-{3-[5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl]-1-phenyl-1H-pyrazol-4-yl}-4,5-dihydro-1H-pyrazol-1-yl)-1,3-thiazole

    Get PDF
    The asymmetric unit of the title compound, C37H28BrClN8S, comprises one molecule. The molecule consists of two ring systems joined by a C—C bond between the dihydropyrazolyl and pyrazolyl rings of the two extended ring systems. The angles between adjacent ring planes of the tolyl–triazolyl–pyrazolyl–phenyl ring system are 48.2 (1), 12.3 (2) and 22.2 (2)°, respectively, with angles of 19.7 (1), 5.6 (2) and 0.9 (2)° between the rings of the chlorophenyl–thiazolyl–dihydropyrazolyl–bromophenyl set. The pyrazolyl and dihydropyrazolyl rings are inclined at 68.3 (1)° to one another. In the crystal, C—H...Cl interactions form chains of molecules parallel to the b-axis direction

    4-(4-Bromophenyl)-2-(3-(4-bromophenyl)-5-{3-[5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl]-1-phenyl-1H-pyrazol-4-yl}-4,5-dihydro-1H-pyrazol-1-yl)-1,3-thiazole

    Get PDF
    In the title compound, C37H28Br2N8S, the dihedral angles between the planes of tolyl–triazolyl–pyrazolyl–phenyl rings are 47.5 (1), 11.4 (2) and 22.4 (2)°, respectively, and the angles between the bromophenyl–thiazolyl–dihydropyrazolyl–bromophenyl rings are 16.0 (2), 5.1 (2) and 0.8 (2)°, respectively. The dihedral angle between the planes of the pyrazolyl and dihydropyrazolyl rings is 67.7 (1)°. In the crystal, weak C—H...Br interactions form chains of molecules propagating in the [010] direction

    4-(4-Bromophenyl)-2-(3-(4-chlorophenyl)-5-{3-[5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl]-1-phenyl-1H-pyrazol-4-yl}-4,5-dihydro-1H-pyrazol-1-yl)-1,3-thiazole

    Get PDF
    The asymmetric unit of the title compound, C37H28BrClN8S, comprises one molecule. The molecule consists of two ring systems joined by a C—C bond between the dihydropyrazolyl and pyrazolyl rings of the two extended ring systems. The angles between adjacent ring planes of the tolyl–triazolyl–pyrazolyl–phenyl ring system are 48.2 (1), 12.3 (2) and 22.2 (2)°, respectively, with angles of 19.7 (1), 5.6 (2) and 0.9 (2)° between the rings of the chlorophenyl–thiazolyl–dihydropyrazolyl–bromophenyl set. The pyrazolyl and dihydropyrazolyl rings are inclined at 68.3 (1)° to one another. In the crystal, C—H...Cl interactions form chains of molecules parallel to the b-axis direction

    1-{2-Anilino-4-methyl-5-[5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazole-4-carbonyl]thiophen-3-yl}ethanone

    Get PDF
    In the title compound, C24H22N4O2S, the dihedral angle between the triazole and thiophene rings is 4.83 (14)°. The dihedral angles between the triazole and tolyl rings and between the thiophene and phenyl rings are 48.42 (16) and 9.23 (13)°, respectively. An intramolecular N—H...O hydrogen bond closes an S(6) loop. In the crystal, molecules are stacked parallel to the a-axis direction with weak π–π interactions between adjacent thiophenyl and triazolyl groups within the stack [centroid–centroid separation = 3.9811 (16) Å]

    Further evidence for association of hepatitis C infection with parenteral schistosomiasis treatment in Egypt

    Get PDF
    BACKGROUND: Hepatitis C virus (HCV) infection and schistosomiasis are major public health problems in the Nile Delta of Egypt. To control schistosomiasis, mass treatment campaigns using tartar emetic injections were conducted in the 1960s through 1980s. Evidence suggests that inadequately sterilized needles used in these campaigns contributed to the transmission of HCV in the region. To corroborate this evidence, this study evaluates whether HCV infections clustered within houses in which household members had received parenteral treatment for schistosomiasis. METHODS: A serosurvey was conducted in a village in the Nile Delta and residents were questioned about prior treatment for schistosomiasis. Sera were evaluated for the presence of antibodies to HCV. The GEE2 approach was used to test for clustering of HCV infections, where correlation of HCV infections within household members who had been treated for schistosomiasis was the parameter of interest. RESULTS: A history of parenteral treatment for schistosomiasis was observed to cluster within households, OR for clustering: 2.44 (95% CI: 1.47–4.06). Overall, HCV seropositivity was 40% (321/796) and was observed to cluster within households that had members who had received parenteral treatment for schistosomiasis, OR for clustering: 1.76 (95% CI: 1.05–2.95). No such evidence for clustering was found in the remaining households. CONCLUSION: Clustering of HCV infections and receipt of parenteral treatment for schistosomiasis within the same households provides further evidence of an association between the schistosomiasis treatment campaigns and the high HCV seroprevalence rates currently observed in the Nile delta of Egypt
    • …
    corecore