53,378 research outputs found
Determination of the Fermion Pair Size in a Resonantly Interacting Superfluid
Fermionic superfluidity requires the formation of pairs. The actual size of
these fermion pairs varies by orders of magnitude from the femtometer scale in
neutron stars and nuclei to the micrometer range in conventional
superconductors. Many properties of the superfluid depend on the pair size
relative to the interparticle spacing. This is expressed in BCS-BEC crossover
theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS) type
superfluid of loosely bound and large Cooper pairs to Bose-Einstein
condensation (BEC) of tightly bound molecules. Such a crossover superfluid has
been realized in ultracold atomic gases where high temperature superfluidity
has been observed. The microscopic properties of the fermion pairs can be
probed with radio-frequency (rf) spectroscopy. Previous work was difficult to
interpret due to strong and not well understood final state interactions. Here
we realize a new superfluid spin mixture where such interactions have
negligible influence and present fermion-pair dissociation spectra that reveal
the underlying pairing correlations. This allows us to determine the
spectroscopic pair size in the resonantly interacting gas to be 2.6(2)/kF (kF
is the Fermi wave number). The pairs are therefore smaller than the
interparticle spacing and the smallest pairs observed in fermionic superfluids.
This finding highlights the importance of small fermion pairs for superfluidity
at high critical temperatures. We have also identified transitions from fermion
pairs into bound molecular states and into many-body bound states in the case
of strong final state interactions.Comment: 8 pages, 7 figures; Figures updated; New Figures added; Updated
discussion of fit function
MESENCHYMAL STEM CELL-MEDIATED ENDOCHONDRAL OSSIFICATION UTILISING MICROPELLETS AND BRIEF CHONDROGENIC PRIMING
With limited autologous and donor bone graft availability, there is an increasing need for alternative graft substitutes. We have previously shown that chondrogenically priming mesenchymal stem cell (MSC) pellets for 28 d in vitro will reproducibly result in endochondral bone formation after in vivo implantation. However, pellet priming time for clinical applications is quite extensive. A micropellet (\xce\xbcpellet)-fibrin construct was developed and coupled, with a shorter priming period, determined by an in vitro time course experiment. In vitro data showed expression of chondrogenic genes and matrix production after 7 d of chondrogenic priming, indicating that briefer priming could possibly be used to induce bone formation in vivo. 7 and 28 d primed pellet, pellet-fibrin and \xce\xbcpellet-fibrin constructs were cultured for in vitro analysis and implanted subcutaneously for 8 weeks into nude mice. \xce\xbcpellet-fibrin constructs, cultured in vitro for 7 or 28 d, produced comparable bone to standard pellets in vivo. MSC-mediated bone formation was achieved following only 7 d of in vitro priming. Bone formation in vivo appeared to be influenced by overall matrix production pre-implantation. Given this short priming time and the injectable nature of the \xce\xbcpellet-fibrin constructs, this approach might be further developed as an injectable bone substitute, leading to a minimally-invasive treatment option, which would allow for tailored filling of bone defects
Virtual Compton Scattering off a Spinless Target in AdS/QCD
We study the doubly virtual Compton scattering off a spinless target
within the Anti-de Sitter(AdS)/QCD formalism. We find
that the general structure allowed by the Lorentz invariance and gauge
invariance of the Compton amplitude is not easily reproduced with the standard
recipes of the AdS/QCD correspondence. In the soft-photon regime, where the
semi-classical approximation is supposed to apply best, we show that the
measurements of the electric and magnetic polarizabilities of a target like the
charged pion in real Compton scattering, can already serve as stringent tests.Comment: 21 pages, version to be published in JHEP
Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis.
Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology
Deep Inelastic Scattering in Conformal QCD
We consider the Regge limit of a CFT correlation function of two vector and
two scalar operators, as appropriate to study small-x deep inelastic scattering
in N=4 SYM or in QCD assuming approximate conformal symmetry. After clarifying
the nature of the Regge limit for a CFT correlator, we use its conformal
partial wave expansion to obtain an impact parameter representation encoding
the exchange of a spin j Reggeon for any value of the coupling constant. The
CFT impact parameter space is the three-dimensional hyperbolic space H3, which
is the impact parameter space for high energy scattering in the dual AdS space.
We determine the small-x structure functions associated to the exchange of a
Reggeon. We discuss unitarization from the point of view of scattering in AdS
and comment on the validity of the eikonal approximation.
We then focus on the weak coupling limit of the theory where the amplitude is
dominated by the exchange of the BFKL pomeron. Conformal invariance fixes the
form of the vector impact factor and its decomposition in transverse spin 0 and
spin 2 components. Our formalism reproduces exactly the general results predict
by the Regge theory, both for a scalar target and for gamma*-gamma* scattering.
We compute current impact factors for the specific examples of N=4 SYM and QCD,
obtaining very simple results. In the case of the R-current of N=4 SYM, we show
that the transverse spin 2 component vanishes. We conjecture that the impact
factors of all chiral primary operators of N=4 SYM only have components with 0
transverse spin.Comment: 44+16 pages, 7 figures. Some correction
Fatigue behaviour of unidirectional carbon-cord reinforced composites and parametric models for life prediction
© 2017 Taylor & Francis Group, London, UK. Unidirectional Carbon Cord reinforced HNBR composites (CF-HNBR) were prepared and fatigue tests under stress control were performed under non-relaxed tension-tension conditions. In this paper, various Constant Life Diagrams (CLD) that are based on different theoretical formulations have been applied to the measured fatigue data of the CF-HNBR composites. The results show that the predictions made by piecewise CLD and modified Harries CLD produce the most accurate results. In addition, a novel experimental set-up is described that replicates in a simplified way the real-pulley situation encountered under typical service conditions to investigate the effect of the bending curvature on the lifetime of the composite subject to coupled tension and bending conditions
Direct observation of molecular cooperativity near the glass transition
We describe direct observations of molecular cooperativity near the glass
transition in poly-vinyl-acetate (PVAc), through nanometer-scale probing of
dielectric fluctuations. Molecular clusters switched spontaneously between two
to four distinct configurations, producing complex random-telegraph-signals
(RTS). Analysis of the RTS and their power spectra shows that individual
clusters exhibit both transient dynamical heterogeneity and non-exponential
kinetics.Comment: 14 pages pdf, need Acrobat Reade
Recommended from our members
Finite settling time stabilisation: the robust SISO case
This article deals with the problem of robustness to multiplicative plant perturbations for the case of finite settling time stabilisation (FSTS) of single input single output (SISO), linear, discrete-time systems. FSTS is a generalisation of the deadbeat control and as in the case of deadbeat control the main feature of FSTS is the placement of all closed-loop poles at the origin of the z-plane. This makes FSTS sensitive to plant perturbations hence, the need of robust design. An efficient robustness index is introduced and the problem is reduced to a finite linear programme where all the benefits of the simplex method, such as effectiveness, efficiency and ability to provide complete solution to the optimisation problem, can be exploited
- …