94 research outputs found

    Determinants of dispersal and phylogeographic history of a highly mobile cetacean species:The North Atlantic harbour porpoise

    Get PDF
    Understanding the determinants of individual dispersal, population structure, and evolutionary history can provide insights about how species will evolve with climate change. However, such a task is complex for highly mobile marine species such as cetaceans for which it is intuitively difficult to infer what could limit their dispersal. The harbor porpoise (Phocoena phococena) is widely distributed in the North Atlantic. Its biogeographic history has been shaped by environmental variation during the last Glaciations with the divergence of three ecotypes (or sub-species) in the Eastern North Atlantic (ENA). However, we still do not know the degree to which populations in the ENA are connected to those in the Western North Atlantic (WNA), what environmental determinants drive the dispersal of porpoises, and whether distinct ecotypes exist in the WNA. Here we analyze the genetic diversity of 10 microsatellite loci and one-quarter of the mitogenome for an unprecedented sampling of 1,533 individuals. Using spatially explicit population genetics approaches, we investigated fine-scale population structure over the entire North Atlantic. Our study suggests that porpoises from the WNA and ENA are part of the same “continental shelf ecotype” that stretches from the northern Bay of Biscay to the WNA. We identified a clear signal of restricted dispersal in the mitogenome data supporting previous evidence of female philopatry. We also discovered a cryptic divergent mitochondrial lineage in one individual from Western Greenland suggesting a fourth distinct ecotype may exist. Finally, we reconstructed the phylogeographic history of these porpoises using coalescent simulations of population evolution, shedding light on the likely scenarios that shaped the current pattern of genetic diversity. These results provide key insights into the factors and processes shaping population structure in this species and will help model its evolution in the forecasted climate changes

    Survival, density, and abundance of common bottlenose dolphins in Barataria Bay (USA) following the Deepwater Horizon oil spill

    Get PDF
    To assess potential impacts of the Deepwater Horizon oil spill in April 2010, we conducted boat-based photo-identification surveys for common bottlenose dolphins Tursiops truncatus in Barataria Bay, Louisiana, USA (~230 km2, located 167 km WNW of the spill center). Crews logged 838 h of survey effort along pre-defined routes on 10 occasions between late June 2010 and early May 2014. We applied a previously unpublished spatial version of the robust design capture-recapture model to estimate survival and density. This model used photo locations to estimate density in the absence of study area boundaries and to separate mortality from permanent emigration. To estimate abundance, we applied density estimates to saltwater (salinity > ~8 ppt) areas of the bay where telemetry data suggested that dolphins reside. Annual dolphin survival varied between 0.80 and 0.85 (95% CIs varied from 0.77 to 0.90) over 3 yr following the Deepwater Horizon spill. In 2 non-oiled bays (in Florida and North Carolina), historic survival averages approximately 0.95. From June to November 2010, abundance increased from 1300 (95% CI ± ~130) to 3100 (95% CI ± ~400), then declined and remained between ~1600 and ~2400 individuals until spring 2013. In fall 2013 and spring 2014, abundance increased again to approximately 3100 individuals. Dolphin abundance prior to the spill was unknown, but we hypothesize that some dolphins moved out of the sampled area, probably northward into marshes, prior to initiation of our surveys in late June 2010, and later immigrated back into the sampled area.Publisher PDFPeer reviewe

    Population consequences of the Deepwater Horizon oil spill on pelagic cetaceans

    Get PDF
    This research was made possible by a grant from the Gulf of Mexico Research Initiative to the Consortium for Advanced Research on Marine Mammal Health Assessment (CARMMHA). T.A.M. acknowledges partial support by CEAUL (funded by FCT−Fundação para a Ciência e a Tecnologia, Portugal, through project UIDB/00006/2020).The Deepwater Horizon disaster resulted in the release of 490000 m3 of oil into the northern Gulf of Mexico. We quantified population consequences for pelagic cetaceans, including sperm whales, beaked whales and 11 species of delphinids. We used existing spatial density models to establish pre-spill population size and distribution, and overlaid an oil footprint to estimate the proportion exposed to oil. This proportion ranged from 0.058 (Atlantic spotted dolphin, 95% CI = 0.041-0.078) to 0.377 (spinner dolphin, 95% CI = 0.217-0.555). We adapted a population dynamics model, developed for an estuarine population of bottlenose dolphins, to each pelagic species by scaling demographic parameters using literature-derived estimates of gestation duration. We used expert elicitation to translate knowledge from dedicated studies of oil effects on bottlenose dolphins to pelagic species and address how density dependence may affect reproduction. We quantified impact by comparing population trajectories under baseline and oil-impacted scenarios. The number of lost cetacean years (difference between trajectories, summed over years) ranged from 964 (short-finned pilot whale, 95% CI = 385-2291) to 32584 (oceanic bottlenose dolphin, 95% = CI 13377-71967). Maximum proportional population decrease ranged from 1.3% (Atlantic spotted dolphin 95% CI = 0.5-2.3) to 8.4% (spinner dolphin 95% CI = 3.2-17.7). Estimated time to recover to 95% of baseline was >10 yr for spinner dolphin (12 yr, 95% CI = 0-21) and sperm whale (11 yr, 95% CI = 0-21), while 7 taxonomic units remained within 95% of the baseline population size (time to recover, therefore, as per its definition, was 0). We investigated the sensitivity of results to alternative plausible inputs. Our methods are widely applicable for estimating population effects of stressors in the absence of direct measurements.Publisher PDFPeer reviewe

    Food habits of Sowerby's beaked whales (Mesoplodon bidens) taken in the pelagic drift gillnet fishery of the western North Atlantic

    Get PDF
    We describe the food habits of the Sowerby’s beaked whale (Mesoplodon bidens) from observations of 10 individuals taken as bycatch in the pelagic drift gillnet fishery for Swordfish (Xiphias gladius) in the western North Atlantic and 1 stranded individual from Kennebunk, Maine. The stomachs of 8 bycaught whales were intact and contained prey. The diet of these 8 whales was dominated by meso- and benthopelagic fishes that composed 98.5% of the prey items found in their stomachs and cephalopods that accounted for only 1.5% of the number of prey. Otoliths and jaws representing at least 31 fish taxa from 15 families were present in the stomach contents. Fishes, primarily from the families Moridae (37.9% of prey), Myctophidae (22.9%), Macrouridae (11.2%), and Phycidae (7.2%), were present in all 8 stomachs. Most prey were from 5 fish taxa: Shortbeard Codling (Laemonema barbatulum) accounted for 35.3% of otoliths, Cocco’s Lanternfish (Lobianchia gemellarii) contributed 12.9%, Marlin-spike (Nezumia bairdii) composed 10.8%, lanternfishes (Lampanyctus spp.) accounted for 8.4%; and Longfin Hake (Phycis chesteri) contributed 6.7%. The mean number of otoliths per stomach was 1196 (range: 327–3452). Most of the fish prey found in the stomachs was quite small, ranging in length from 4.0 to 27.7 cm. We conclude that the Sowerby’s beaked whales that we examined in this study fed on large numbers of relatively small meso- and benthopelagic fishes that are abundant along the slope and shelf break of the western North Atlantic
    corecore