13,185 research outputs found

    Gauge parameter dependence in gauge theories (revised: subsection 2.3)

    Get PDF
    Dependence on the gauge parameters is an important issue in gauge theories: physical quantities have to be independent. Extending BRS transformations by variation of the gauge parameter into a Grassmann variable one can control gauge parameter dependence algebraically. As application we discuss the anomaly coefficient in the Slavnov-Taylor identity, SS-matrix elements, the vector two-point-function and the coefficients of renormalization group and Callan-Symanzik equation.Comment: 6, MPI-PhT/94-34, BUTP-94/1

    Renormalization of supersymmetric Yang-Mills theories with soft supersymmetry breaking

    Full text link
    The renormalization of supersymmetric Yang-Mills theories with soft supersymmetry breaking is presented using spurion fields for introducing the breaking terms. It is proven that renormalization of the fields and parameters in the classical action yields precisely the correct counterterms to cancel all divergences. In the course of the construction of higher orders additional independent parameters appear, but they can be shown to be irrelevant in physics respects. Thus, the only parameters with influence on physical amplitudes are the supersymmetric and the well-known soft breaking parameters.Comment: 29 pages, published in The European Physical Journal

    Forming efficient agent groups for completing complex tasks

    No full text
    In this paper we produce complexity and impossibility results and develop algorithms for a task allocation problem that needs to be solved by a group of autonomous agents working together. In particular, each task is assumed to be composed of several subtasks and involves an associated predetermined and known overall payment (set by the taskā€™s owner) for its completion. However, the division of this payment among the corresponding contributors is not predefined. Now to accomplish a particular task, all its subtasks need to be allocated to agents with the necessary capabilities and the agentsā€™ corresponding costs need to fall within the preset overall task payment. For this scenario, we first provide a cooperative agent system designer with a practical solution that achieves an efficient allocation. However, this solution is not applicable for non-cooperative settings. Consequently, we go on to provide a detailed analysis where we prove that certain design goals cannot be achieved if the agents are self interested. Specifically, we prove that for the general case, no protocol achieving the efficient solution can exist that is individually rational and budget balanced. We show that although efficient protocols may exist in some settings, these will inevitably be setting-specific

    A temperature-dependent phase-field model for phase separation and damage

    Get PDF
    In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature (cf., e.g., [C. Heinemann, C. Kraus: Existence results of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage. Adv. Math. Sci. Appl. 21 (2011), 321--359] and [C. Heinemann, C. Kraus: Existence results for diffuse interface models describing phase separation and damage. European J. Appl. Math. 24 (2013), 179--211]), we encompass in the model thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More in particular, we prove the existence of "entropic weak solutions", resorting to a solvability concept first introduced in [E. Feireisl: Mathematical theory of compressible, viscous, and heat conducting fluids. Comput. Math. Appl. 53 (2007), 461--490] in the framework of Fourier-Navier-Stokes systems and then recently employed in [E. Feireisl, H. Petzeltov\'a, E. Rocca: Existence of solutions to a phase transition model with microscopic movements. Math. Methods Appl. Sci. 32 (2009), 1345--1369], [E. Rocca, R. Rossi: "Entropic" solutions to a thermodynamically consistent PDE system for phase transitions and damage. SIAM J. Math. Anal., 47 (2015), 2519--2586] for the study of PDE systems for phase transition and damage. Our global-in-time existence result is obtained by passing to the limit in a carefully devised time-discretization scheme

    Determining topological order from a local ground state correlation function

    Full text link
    Topological insulators are physically distinguishable from normal insulators only near edges and defects, while in the bulk there is no clear signature to their topological order. In this work we show that the Z index of topological insulators and the Z index of the integer quantum Hall effect manifest themselves locally. We do so by providing an algorithm for determining these indices from a local equal time ground-state correlation function at any convenient boundary conditions. Our procedure is unaffected by the presence of disorder and can be naturally generalized to include weak interactions. The locality of these topological indices implies bulk-edge correspondence theorem.Comment: 7 pages, 3 figures. Major changes: the paper was divided into sections, the locality of the order in 3D topological insulators is also discusse
    • ā€¦
    corecore