802 research outputs found
Simulation of Dynamic Rearrangement Events in Wall-Flow Filters Applying Lattice Boltzmann Methods
Wall-flow filters are applied in the exhaust treatment of internal combustion engines for the removal of particulate matter (PM). Over time, the pressure drop inside those filters increases due to the continuously introduced solid material, which forms PM deposition layers on the filter substrate. This leads to the necessity of regenerating the filter. During such a regeneration process, fragments of the PM layers can potentially rearrange inside single filter channels. This may lead to the formation of specific deposition patterns, which affect a filter’s pressure drop, its loading capacity and the separation efficiency. The dynamic formation process can still not consistently be attributed to specific influence factors, and appropriate calculation models that enable a quantification of respective factors do not exist. In the present work, the dynamic rearrangement process during the regeneration of a wall-flow filter channel is investigated. As a direct sequel to the investigation of a static deposition layer in a previous work, the present one additionally investigates the dynamic behaviour following the detachment of individual layer fragments as well as the formation of channel plugs. The goal of this work is the extension of the resolved particle methodology used in the previous work via a discrete method to treat particle–particle and particle–wall interactions in order to evaluate the influence of the deposition layer topology, PM properties and operating conditions on dynamic rearrangement events. It can be shown that a simple mean density methodology represents a reproducible way of determining a channel plug’s extent and its average density, which agrees well with values reported in literature. The sensitivities of relevant influence factors are revealed and their impact on the rearrangement process is quantified. This work contributes to the formulation of predictions on the formation of specific deposition patterns, which impact engine performance, fuel consumption and service life of wall-flow filters
Genome-Wide Analysis Reveals Novel Regulators of Growth in Drosophila melanogaster.
Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA) analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequenced lines. We find that the top associated variants differ between traits and sexes; do not map to canonical growth pathway genes, but can be linked to these by epistasis analysis; and are enriched for genes and putative enhancers. Performing GWA on well-studied developmental traits under controlled conditions expands our understanding of developmental processes underlying phenotypic diversity
Mal/SRF Is Dispensable for Cell Proliferation in Drosophila
The Mal/SRF transcription factor is regulated by the level of G-actin in cells and has important roles in cell migration and other actin-dependent processes in Drosophila. A recent report suggests that Mal/SRF and an upstream regulator, Pico, are required for cell proliferation and tissue growth in Drosophila. I find otherwise. Mutation of Mal or SRF does not affect cell proliferation in the fly wing. Furthermore, I cannot reproduce the reported effects of Pico RNAi or Pico overexpression on body size. Nevertheless, I can confirm that overexpression of Pico or Mal causes tissue overgrowth specifically in the fly wing - where SRF is most highly expressed. My results indicate that Mal/SRF can promote tissue growth when abnormally active, but is not normally required for tissue growth during development
Interactive Video Gaming: Do We Feel Like We Are Exercising?
The primary purpose of this study was to determine if the rating of perceived exertion (RPE) and hedonics (liking or enjoyment) changed during 30 contiguous minutes of playing select, interactive video games on the Nintendo Wii system. A secondary purpose was to determine if RPE and liking differed among games.These data suggest that individuals do perceive difference in the amount of work they are performing during extended play of the same game or among sedentary and physically interactive games. Additionally, liking was similar during extended game play and among games suggesting that the physical interaction with the game may be superseded by interest in the game. Promoting the use of physically interactive gaming may be useful in helping individuals meet their daily recommendations for physical activity owing to their enjoyment which minimizes the perception of being physically demanding
Physically Interactive Games Increase VO2 Above Resting Metabolic Rate
The purpose of this study was to determine the energy cost, beyond resting metabolic rate (RMR), of playing select games on the Nintendo Wii for 30 contiguous minutes. Physically interactive games (i.e. Basic Run and Basic Step) increase energy expenditure above resting values compared to a sedentary game (Tanks!) and therefore may help individual’s become more active. Furthermore, Basic Run and Basic Step elicited MET values of 3.9 and 3.2, respectively, which is considered moderate-intensity exercise and could be used to meet daily recommendations for physical activity
Pressure balance in the multiphase ISM of cosmologically simulated disc galaxies
Pressure balance plays a central role in models of the interstellar medium (ISM), but whether and how pressure balance is realized in a realistic multiphase ISM is not yet well understood. We address this question by using a set of FIRE-2 cosmological zoom-in simulations of Milky Way-mass disc galaxies, in which a multiphase ISM is self-consistently shaped by gravity, cooling, and stellar feedback. We analyse how gravity determines the vertical pressure profile as well as how the total ISM pressure is partitioned between different phases and components (thermal, dispersion/turbulence, and bulk flows). We show that, on average and consistent with previous more idealized simulations, the total ISM pressure balances the weight of the overlying gas. Deviations from vertical pressure balance increase with increasing galactocentric radius and with decreasing averaging scale. The different phases are in rough total pressure equilibrium with one another, but with large deviations from thermal pressure equilibrium owing to kinetic support in the cold and warm phases, which dominate the total pressure near the mid-plane. Bulk flows (e.g. inflows and fountains) are important at a few disc scale heights, while thermal pressure from hot gas dominates at larger heights. Overall, the total mid-plane pressure is well-predicted by the weight of the disc gas and we show that it also scales linearly with the star formation rate surface density (ςSFR). These results support the notion that the Kennicutt-Schmidt relation arises because ςSFR and the gas surface density (ςg) are connected via the ISM mid-plane pressure
The origin of the diverse morphologies and kinematics of Milky Way-mass galaxies in the FIRE-2 simulations
We use hydrodynamic cosmological zoom-in simulations from the Feedback in Realistic Environments project to explore the morphologies and kinematics of 15 Milky Way (MW)-mass galaxies. Our sample ranges from compact, bulge-dominated systems with 90 per cent of their stellar mass within 2.5 kpc to well-ordered discs that reach ≳15 kpc. The gas in our galaxies always forms a thin, rotation-supported disc at z = 0, with sizes primarily determined by the gas mass. For stars, we quantify kinematics and morphology both via the fraction of stars on disc-like orbits and with the radial extent of the stellar disc. In this mass range, stellar morphology and kinematics are poorly correlated with the properties of the halo available from dark matter-only simulations (halo merger history, spin, or formation time). They more strongly correlate with the gaseous histories of the galaxies: those that maintain a high gas mass in the disc after z ∼ 1 develop well-ordered stellar discs. The best predictor of morphology we identify is the spin of the gas in the halo at the time the galaxy formed 1/2 of its stars (i.e. the gas that builds the galaxy). High-z mergers, before a hot halo emerges, produce some of the most massive bulges in the sample (from compact discs in gas-rich mergers), while later-forming bulges typically originate from internal processes, as satellites are stripped of gas before the galaxies merge. Moreover, most stars in z = 0 MW-mass galaxies (even z = 0 bulge stars) form in a disc: ≳60--90 per cent of stars begin their lives rotationally supported
- …