40,690 research outputs found

    The Eighteenth Century

    Get PDF
    This chapter has three sections: 1. General and Prose; 2. The Novel; 3. Poetry. Section 1 is by Eliza O’Brien; section 2 is by Elles Smallegoor and Sandro Jung; section 3 is by David E. Shuttleton

    Gas Dynamics of the Nickel-56 Decay Heating in Pair-Instability Supernovae

    Get PDF
    Very massive 140-260 Msun stars can die as highly-energetic pair-instability supernovae (PI SNe) with energies of up to 100 times those of core-collapse SNe that can completely destroy the star, leaving no compact remnant behind. These explosions can synthesize 0.1−300.1-30 Msun of radioactive Ni56, which can cause them to rebrighten at later times when photons due to Ni56 decay diffuse out of the ejecta. However, heat from the decay of such large masses of Ni56 could also drive important dynamical effects deep in the ejecta that are capable of mixing elements and affecting the observational signatures of these events. We have now investigated the dynamical effect of Ni56 heating on PI SN ejecta with high-resolution two-dimensional hydrodynamic simulations performed with the CASTRO code. We find that expansion of the hot Ni56 bubble forms a shell at the base of the silicon layer of the ejecta about 200 days after the explosion but that no hydrodynamical instabilities develop that would mix Ni56 with the Si/O-rich ejecta. However, while the dynamical effects of Ni56 heating may be weak they could affect the observational signatures of some PI SNe by diverting decay energy into internal expansion of the ejecta at the expense of rebrightening at later times.Comment: Accepted to ApJ, 14 page

    Hawking radiation in a dd-dimensional static spherically-symmetric black Hole surrounded by quintessence

    Full text link
    We present a solution of Einstein equations with quintessential matter surrounding a dd-dimensional black hole, whose asymptotic structures are determined by the state of the quintessential matter. We examine the thermodynamics of this black hole and find that the mass of the black hole depends on the equation of state of the quintessence, while the first law is universal. Investigating the Hawking radiation in this black hole background, we observe that the Hawking radiation dominates on the brane in the low-energy regime. For different asymptotic structures caused by the equation of state of the quintessential matter surrounding the black hole, we learn that the influences by the state parameter of the quintessence on Hawking radiation are different.Comment: 16 pages, Accepted for publication in Phys. Rev.

    Ionic and Electronic Conductivity of Nanostructured, Samaria-Doped Ceria

    Get PDF
    The ionic and electronic conductivities of samaria doped ceria electrolytes, Ce_(0.85)Sm_(0.15)O_(1.925−δ), with nanometric grain size have been evaluated. Nanostructured bulk specimens were obtained using a combination of high specific-surface-area starting materials and suitable sintering profiles under conventional, pressureless conditions. Bulk specimens with relatively high density (≥92% of theoretical density) and low medium grain size (as small as 33 nm) were achieved. Electrical A.C. impedance spectra were recorded over wide temperature (150 to 650°C) and oxygen partial pressure ranges (0.21 to 10^(−31) atm). Under all measurement conditions the total conductivity decreased monotonically with decreasing grain size. In both the electrolytic and mixed conducting regimes this behavior is attributed to the high number density of high resistance grain boundaries. The results suggest a possible variation in effective grain boundary width with grain size, as well as a possible variation in specific grain boundary resistance with decreasing oxygen partial pressure. No evidence appears for either enhanced reducibility or enhanced electronic conductivity upon nanostructuring

    Strong gravitational lensing in a squashed Kaluza-Klein black hole spacetime

    Full text link
    We investigate the strong gravitational lensing in a Kaluza-Klein black hole with squashed horizons. We find the size of the extra dimension imprints in the radius of the photon sphere, the deflection angle, the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the Galaxy can be described by this metric, we estimated the numerical values of the coefficients and observables for gravitational lensing in the strong field limit.Comment: 13pages, 5 figures, Final version appeared in PR

    Radiation Transport Simulations of Pulsational Pair-Instability Supernovae

    Full text link
    Massive stars of helium cores of 35-65 Msun eventually encounter the electron/positron creation instability, and it triggers explosive carbon or oxygen burning that produces several thermonuclear eruptions. The resulting catastrophe collisions of eruptive shells sometimes produce luminous transients with peak luminosity of 1043−104410^{43} - 10^{44} erg/sec, known as pulsational pair-instability supernovae (PPISNe). Previous 2D simulations of colliding shells show the development of Rayleigh-Taylor (RT) instabilities and mixing. Here we present radiation hydrodynamic PPISNe simulations of a 110 Msun solar-metallicity star that was promising to produce a superluminous transit in the early work. Our comprehensive study contains a suite of one-, two-, and three-dimensional models. We discuss the impact of dimensionality and fluid instabilities on the resulting light curves. The results show the RT mixing found in previous multidimensional hydro studies transforms into a thin and distorted shell due to radiative cooling. Radiation from the wiggly shell peaks at its bolometric light curve of ∼2×1043\sim 2\times10^{43} erg/sec, lasting about 150 days and following with a plateau of ∼3×1042\sim 3\times10^{42} erg/sec for another two hundred days before it fades away. The total radiation energy emitted from colliding shells is ∼1.8×1050\sim 1.8 \times 10^{50} erg, which is ∼27%\sim 27\% of the kinetic energy of the major eruption. The dimensional effects also manifest on the physical properties, such as irregularity and thickness of the shell. Our study suggests PPISNe is a promising candidate of luminous SNe, the radiation of which originates from colliding shells with a homogeneous mixing of ejecta.Comment: Submitted to ApJ, 16 pages, comments are welcom

    Transport in Graphene Tunnel Junctions

    Get PDF
    We present a technique to fabricate tunnel junctions between graphene and Al and Cu, with a Si back gate, as well as a simple theory of tunneling between a metal and graphene. We map the differential conductance of our junctions versus probe and back gate voltage, and observe fluctuations in the conductance that are directly related to the graphene density of states. The conventional strong-suppression of the conductance at the graphene Dirac point can not be clearly demonstrated, but a more robust signature of the Dirac point is found: the inflection in the conductance map caused by the electrostatic gating of graphene by the tunnel probe. We present numerical simulations of our conductance maps, confirming the measurement results. In addition, Al causes strong n-doping of graphene, Cu causes a moderate p-doping, and in high resistance junctions, phonon resonances are observed, as in STM studies.Comment: 22 pages, 5 figure
    • …
    corecore