research

Gas Dynamics of the Nickel-56 Decay Heating in Pair-Instability Supernovae

Abstract

Very massive 140-260 Msun stars can die as highly-energetic pair-instability supernovae (PI SNe) with energies of up to 100 times those of core-collapse SNe that can completely destroy the star, leaving no compact remnant behind. These explosions can synthesize 0.1300.1-30 Msun of radioactive Ni56, which can cause them to rebrighten at later times when photons due to Ni56 decay diffuse out of the ejecta. However, heat from the decay of such large masses of Ni56 could also drive important dynamical effects deep in the ejecta that are capable of mixing elements and affecting the observational signatures of these events. We have now investigated the dynamical effect of Ni56 heating on PI SN ejecta with high-resolution two-dimensional hydrodynamic simulations performed with the CASTRO code. We find that expansion of the hot Ni56 bubble forms a shell at the base of the silicon layer of the ejecta about 200 days after the explosion but that no hydrodynamical instabilities develop that would mix Ni56 with the Si/O-rich ejecta. However, while the dynamical effects of Ni56 heating may be weak they could affect the observational signatures of some PI SNe by diverting decay energy into internal expansion of the ejecta at the expense of rebrightening at later times.Comment: Accepted to ApJ, 14 page

    Similar works