216 research outputs found

    Persistence of Methicillin-resistant Staphylococcus aureus (MRSA) in pig herds over a two year period

    Get PDF
    Aim of this study was to determine if a known MRSA contamination within a pig herd could persist for a period of two years. Material and Methods: 16 pig herds with a known MRSA contamination were asked to participate in this study. Per herd, five dust swabs (Sodibox®) were collected every two months for a period of two years. Samples were tested for presence of MRSA by culture and two PCR’s for confirmation of MRSA. Isolates were typed by spa- en MLVA-typing

    Methane Decomposition and Carbon Growth on Y<sub>2</sub>O<sub>3</sub>, Yttria-Stabilized Zirconia, and ZrO<sub>2</sub>

    Get PDF
    Carbon deposition following thermal methane decomposition under dry and steam reforming conditions has been studied on yttria-stabilized zirconia (YSZ), Y2O3 and ZrO2 by a range of different chemical, structural and spectroscopic characterization techniques, including aberration-corrected electron microscopy, Raman spectroscopy, electric impedance spectroscopy and volumetric adsorption techniques. Concordantly, all experimental techniques reveal the formation of a conducting layer of disordered nanocrystalline graphite covering the individual grains of the respective pure oxides after treatment in dry methane at temperatures T ≥ 1000 K. In addition, treatment under moist methane conditions causes additional formation of carbon-nanotube-like architectures by partial detachment of the graphite layers. All experiments show that during carbon growth, no substantial reduction of any of the oxides takes place. Our results therefore indicate that these pure oxides can act as efficient nonmetallic substrates for methane-induced growth of different carbon species with potentially important implications regarding their use in solid oxide fuel cells. By comparison of the three oxides we could moreover elucidate differences in the methane reactivities of the respective SOFC-relevant purely oxidic surfaces under typical SOFC operation conditions without the presence of metallic constituents

    Structural and Electrochemical Properties of Physisorbed and Chemisorbed Water Layers on the Ceramic Oxides Y2O3, YSZ, and ZrO2

    Get PDF
    A combination of operando Fourier transform infrared spectroscopy, operando electrochemical-impedance spectroscopy, and moisture-sorption measurements has been exploited to study the adsorption and conduction behavior of H2O and D2O on the technologically important ceramic oxides YSZ (8 mol % Y2O3), ZrO2, and Y2O3. Because the characterization of the chemisorbed and physisorbed water layers is imperative to a full understanding of (electro-)catalytically active doped oxide surfaces and their application in technology, the presented data provide the specific reactivity of these oxides toward water over a pressure-and-temperature parameter range extending up to, e.g., solid-oxide fuel cell (SOFC)-relevant conditions. The characteristic changes of the related infrared bands could directly be linked to the associated conductivity and moisture-sorption data. For YSZ, a sequential dissociative water (“ice-like” layer) and polymeric chained water (“liquid-like”) water-adsorption model for isothermal and isobaric conditions over a pressure range of 10-5 to 24 mbar and a temperature range from room temperature up to 1173 K could be experimentally verified. On pure monoclinic ZrO2, in contrast to highly hydroxylated YSZ and Y2O3, a high surface concentration of OH groups from water chemisorption is absent at any temperature and pressure. Thus, the ice-like and following molecular water layers exhibit no measurable protonic conduction. We show that the water layers, even under these rather extreme experimental conditions, play a key role in understanding the function of these materials. Furthermore, the reported data are supposed to provide an extended basis for the further investigation of close-to-real gas adsorption or catalyzed heterogeneous reactions.(VLID)1371561Accepted versio

    Metastable Corundum-Type In2O3: Phase Stability, Reduction Properties, and Catalytic Characterization

    Get PDF
    The phase stability, reduction, and catalytic properties of corundum-type rhombohedral In2O3 have been comparatively studied with respect to its thermodynamically more stable cubic In2O3 counterpart. Phase stability and transformation were observed to be strongly dependent on the gas environment and the reduction potential of the gas phase. As such, reduction in hydrogen caused both the efficient transformation into the cubic polymorph as well as the formation of metallic In especially at high reduction temperatures between 573 and 673 K. In contrast, reduction in CO suppresses the transformation into cubic In2O3 but leads to a larger quantity of In metal at comparable reduction temperatures. This difference is also directly reflected in temperature-dependent conductivity measurements. Catalytic characterization of rh-In2O3 reveals activity in both routes of the water-gas shift equilibrium, which gives rise to a diminished CO2-selectivity of 60% in methanol steam reforming. This is in strong contrast to its cubic counterpart where CO2 selectivities of close to 100% due to the suppressed inverse water-gas shift reaction, have been obtained. Most importantly, rh-In2O3 in fact is structurally stable during catalytic characterization and no unwanted phase transformations are triggered. Thus, the results directly reveal the application-relevant physicochemical properties of rh-In2O3 that might encourage subsequent studies on other less-common In2O3 polymorphs.(VLID)2581066Accepted versio

    Generation of Covalently Closed Circular DNA of Hepatitis B Viruses via Intracellular Recycling Is Regulated in a Virus Specific Manner

    Get PDF
    Persistence of hepatitis B virus (HBV) infection requires covalently closed circular (ccc)DNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc) DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV) in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process

    Adsorption and reaction of CO on (Pd–)Al2O3 and (Pd–)ZrO2: vibrational spectroscopy of carbonate formation

    Get PDF
    γ-Alumina is widely used as an oxide support in catalysis, and palladium nanoparticles supported by alumina represent one of the most frequently used dispersed metals. The surface sites of the catalysts are often probed via FTIR spectroscopy upon CO adsorption, which may result in the formation of surface carbonate species. We have examined this process in detail utilizing FTIR to monitor carbonate formation on γ-alumina and zirconia upon exposure to isotopically labelled and unlabelled CO and CO2. The same was carried out for well-defined Pd nanoparticles supported on Al2O3 or ZrO2. A water gas shift reaction of CO with surface hydroxyls was detected, which requires surface defect sites and adjacent OH groups. Furthermore, we have studied the effect of Cl synthesis residues, leading to strongly reduced carbonate formation and changes in the OH region (isolated OH groups were partly replaced or were even absent). To corroborate this finding, samples were deliberately poisoned with Cl to an extent comparable to that of synthesis residues, as confirmed by Auger electron spectroscopy. For catalysts prepared from Cl-containing precursors a new CO band at 2164 cm−1 was observed in the carbonyl region, which was ascribed to Pd interacting with Cl. Finally, the FTIR measurements were complemented by quantification of the amount of carbonates formed via chemisorption, which provides a tool to determine the concentration of reactive defect sites on the alumina surface

    Epidemiology of Extended-Spectrum beta-Lactamase-Producing E-coli and Vancomycin-Resistant Enterococci in the Northern Dutch-German Cross-Border Region

    Get PDF
    Objectives: To reveal the prevalence and epidemiology of extended-spectrum β-lactamase (ESBL)- and/or plasmid AmpC (pAmpC)- and carbapenemase (CP) producing Enterobacteriaceae and vancomycin-resistant enterococci (VRE) across the Northern Dutch–German border region.Methods: A point-prevalence study on ESBL/pAmpC/CP producing Enterobacteriaceae and VRE was carried out in hospitalized patients in the Northern Netherlands (n = 445, 2012–2013) and Germany (n = 242, 2012). Healthy individuals from the Dutch community (n = 400, 2010–2012) were also screened. In addition, a genome-wide gene-by-gene approach was applied to study the epidemiology of ESBL-Escherichia coli and VRE.Results: A total of 34 isolates from 27 patients (6.1%) admitted to Dutch hospitals were ESBL/pAmpC positive and 29 ESBL-E. coli, three pAmpC-E. coli, one ESBL-Enterobacter cloacae, and one pAmpC-Proteus mirabilis were found. In the German hospital, 18 isolates (16 E. coli and 2 Klebsiella pneumoniae) from 17 patients (7.7%) were ESBL positive. In isolates from the hospitalized patients CTX-M-15 was the most frequently detected ESBL-gene. In the Dutch community, 11 individuals (2.75%) were ESBL/pAmpC positive: 10 ESBL-E. coli (CTX-M-1 being the most prevalent gene) and one pAmpC E. coli. Six Dutch (1.3%) and four German (3.9%) hospitalized patients were colonized with VRE. Genetic relatedness by core genome multi-locus sequence typing (cgMLST) was found between two ESBL-E. coli isolates from Dutch and German cross-border hospitals and between VRE isolates from different hospitals within the same region.Conclusion: The prevalence of ESBL/pAmpC-Enterobacteriaceae was similar in hospitalized patients across the Dutch–German border region, whereas VRE prevalence was slightly higher on the German side. The overall prevalence of the studied pathogens was lower in the community than in hospitals in the Northern Netherlands. Cross-border transmission of ESBL-E. coli and VRE seems unlikely based on cgMLST analysis, however continuous monitoring is necessary to control their spread and stay informed about their epidemiology

    Assessment of risk factors related to healthcare-associated methicillin-resistant Staphylococcus aureus infection at patient admission to an intensive care unit in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Healthcare-associated methicillin-resistant <it>Staphylococcus aureus </it>(HA-MRSA) infection in intensive care unit (ICU) patients prolongs ICU stay and causes high mortality. Predicting HA-MRSA infection on admission can strengthen precautions against MRSA transmission. This study aimed to clarify the risk factors for HA-MRSA infection in an ICU from data obtained within 24 hours of patient ICU admission.</p> <p>Methods</p> <p>We prospectively studied HA-MRSA infection in 474 consecutive patients admitted for more than 2 days to our medical, surgical, and trauma ICU in a tertiary referral hospital in Japan. Data obtained from patients within 24 hours of ICU admission on 11 prognostic variables possibly related to outcome were evaluated to predict infection risk in the early phase of ICU stay. Stepwise multivariate logistic regression analysis was used to identify independent risk factors for HA-MRSA infection.</p> <p>Results</p> <p>Thirty patients (6.3%) had MRSA infection, and 444 patients (93.7%) were infection-free. Intubation, existence of open wound, treatment with antibiotics, and steroid administration, all occurring within 24 hours of ICU admission, were detected as independent prognostic indicators. Patients with intubation or open wound comprised 96.7% of MRSA-infected patients but only 57.4% of all patients admitted.</p> <p>Conclusions</p> <p>Four prognostic variables were found to be risk factors for HA-MRSA infection in ICU: intubation, open wound, treatment with antibiotics, and steroid administration, all occurring within 24 hours of ICU admission. Preemptive infection control in patients with these risk factors might effectively decrease HA-MRSA infection.</p
    corecore