806 research outputs found

    Implications of Corporate Capital Structure Theory for Banking Institutions

    Get PDF
    This paper applies some recent advances in corporate capital structure theory to the determination of optimal capital in banking. The effects of corporate and personal taxes, government regulation, the technology of producing deposit services and the costs of bankruptcy and agency problems are all discussed in the context of the U.S. commercial banking system. The analysis suggests explanations for why commercial banks tend to have relatively less capital than nonfinancial firms, why commercial bank leverage has tended to increase over time and why large banks tend to have relatively less capital than small banks.

    Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature

    Full text link
    Water molecules adsorbed on inorganic substrates play an important role in several technological applications. In the presence of light atoms in adsorbates, nuclear quantum effects (NQE) influence properties of these systems. In this work, we explore the impact of NQE on the dissociation of water wires on stepped Pt(221) surfaces. By performing ab initio molecular dynamics simulations with van der Waals corrected density functional theory, we note that several competing minima for both intact and dissociated structures are accessible at finite temperatures, making it important to assess whether harmonic estimates of the quantum free energy are sufficient to determine the relative stability of the different states. We perform ab initio path integral molecular dynamics (PIMD) in order to calculate these contributions taking into account conformational entropy and anharmonicities at finite temperatures. We propose that when when adsorption is weak and NQE on the substrate are negligible, PIMD simulations can be performed through a simple partition of the system, resulting in considerable computational savings. We calculate the contribution of NQE to the free energies, including anharmonic terms. We find that they result in an increase of up to 20% of the quantum contribution to the dissociation free energy compared to harmonic estimates. We also find that the dissociation has a negligible contribution from tunneling, but is dominated by ZPE, which can enhance the rate by three orders of magnitude. Finally we highlight how both temperature and NQE indirectly impact dipoles and the redistribution of electron density, causing work function to changes of up to 0.4 eV with respect to static estimates. This quantitative determination of the change in work function provides a possible approach to determine experimentally the most stable configurations of water oligomers on the stepped surfaces

    An exactly solvable model for driven dissipative systems

    Full text link
    We introduce a solvable stochastic model inspired by granular gases for driven dissipative systems. We characterize far from equilibrium steady states of such systems through the non-Boltzmann energy distribution and compare different measures of effective temperatures. As an example we demonstrate that fluctuation-dissipation relations hold, however with an effective temperature differing from the effective temperature defined from the average energy.Comment: Some further clarifications. No changes in results or conclusion

    Interference in Bohmian Mechanics with Complex Action

    Full text link
    In recent years, intensive effort has gone into developing numerical tools for exact quantum mechanical calculations that are based on Bohmian mechanics. As part of this effort we have recently developed as alternative formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex [JCP {125}, 231103 (2006)]. In the alternative formulation there is a significant reduction in the magnitude of the quantum force as compared with the conventional Bohmian formulation, at the price of propagating complex trajectories. In this paper we show that Bohmian mechanics with complex action is able to overcome the main computational limitation of conventional Bohmian methods -- the propagation of wavefunctions once nodes set in. In the vicinity of nodes, the quantum force in conventional Bohmian formulations exhibits rapid oscillations that pose severe difficulties for existing numerical schemes. We show that within complex Bohmian mechanics, multiple complex initial conditions can lead to the same real final position, allowing for the description of nodes as a sum of the contribution from two or more crossing trajectories. The idea is illustrated on the reflection amplitude from a one-dimensional Eckart barrier. We believe that trajectory crossing, although in contradiction to the conventional Bohmian trajectory interpretation, provides an important new tool for dealing with the nodal problem in Bohmian methods

    Slow and Smooth: A Bayesian Theory for the Combination of Local Motion Signals in Human Vision

    Get PDF
    In order to estimate the motion of an object, the visual system needs to combine multiple local measurements, each of which carries some degree of ambiguity. We present a model of motion perception whereby measurements from different image regions are combined according to a Bayesian estimator --- the estimated motion maximizes the posterior probability assuming a prior favoring slow and smooth velocities. In reviewing a large number of previously published phenomena we find that the Bayesian estimator predicts a wide range of psychophysical results. This suggests that the seemingly complex set of illusions arise from a single computational strategy that is optimal under reasonable assumptions

    EXPERIMENTAL STUDY TO ASSESS THE IMPACT OF TIMERS ON USER SUSCEPTIBILITY TO PHISHING ATTACKS

    Get PDF
    Social engineering costs organizations billions of dollars. It exploits the weakest link of information systems security, the users. It is well-documented in literature that users continue to click on phishing emails costing them and their employers significant monetary resources and data loss. Training does not appear to mitigate the effects of phishing much; other solutions are warranted. Kahneman introduced the concepts of System-One and System-Two thinking. System-One is a quick, instinctual decision-making process, while System-Two is a process by which humans use a slow, logical, and is easily disrupted. The key aim of our experimental field study was to investigate if requiring the user to pause by presenting a countdown or count-up timer when a possible phishing email is opened will influence the user to enter System-Two thinking. In this study, we designed, developed, and empirically tested a Pause-and-Think (PAT) mobile app that presented a user with a warning dialog and a countdown or count-up timer. Our goal was to determine whether requiring users to wait with a colored warning and a timer has any effect on phishing attempts. The study was completed in three phases with 42 subject matter experts and 107 participants. The results indicated that a countdown timer set at 3-seconds accompanied by red warning text was most effective on the user’s ability to avoid clicking on a malicious link or attachment. Recommendations for future research include enhancements to the PAT mobile app and investigating what effect the time of day has on susceptibility to phishing

    Carotenoid Derivates in Achiote (Bixa orellana) Seeds: Synthesis and Health Promoting Properties

    Get PDF
    Bixa orellana (family Bixaceae) is a neotropical fast growing perennial tree of great agro-industrial value because its seeds have a high carotenoid content, mainly bixin. It has been used since pre-colonial times as a culinary colorant and spice, and for healing purposes. It is currently used as a natural pigment in the food, in pharmaceutical, and cosmetic industries, and it is commercially known as annatto. Recently, several studies have addressed the biological and medical properties of this natural pigment, both as potential source of new drugs or because its ingestion as a condiment or diet supplement may protect against several diseases. The most documented properties are anti-oxidative; but its anti-cancer, hypoglucemic, antibiotic and anti-inflammatory properties are also being studied. Bixin’s pathway elucidation and its regulation mechanisms are critical to improve the produce of this important carotenoid. Even though the bixin pathway has been established, the regulation of the genes involved in bixin production remains largely unknown. Our laboratory recently published B. orellana’s transcriptome and we have identified most of its MEP (methyl-D-erythritol 4-phosphate) and carotenoid pathway genes. Annatto is a potential source of new drugs and can be a valuable nutraceutical supplement. However, its nutritional and healing properties require further study

    Quantized representation of some nonlinear integrable evolution equations on the soliton sector

    Full text link
    The Hirota algorithm for solving several integrable nonlinear evolution equations is suggestive of a simple quantized representation of these equations and their soliton solutions over a Fock space of bosons or of fermions. The classical nonlinear wave equation becomes a nonlinear equation for an operator. The solution of this equation is constructed through the operator analog of the Hirota transformation. The classical N-solitons solution is the expectation value of the solution operator in an N-particle state in the Fock space.Comment: 12 page
    • …
    corecore